精英家教网 > 高中数学 > 题目详情

如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,
(1)求证;
(2)求异面直线AC1与B1C所成角的余弦值.

(1)略;(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知在侧棱垂直于底面的三棱柱中,
的中点。

(1)求证:
(2)求与平面所成的角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,
(1)建立适当的坐标系,求出E点的坐标;
(2)证明:EF是异面直线D1B与AD的公垂线;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形中(图1),的中点,将(图1)沿直线折起,使二面角(如图2)
(1)求证:平面
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)如图,在直三棱柱中,,点的中点.
(Ⅰ)求证:
(Ⅱ)求证:平面
(Ⅲ)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求证:AD⊥平面SBC;
(II)试在SB上找一点E,使得BC//平面ADE,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.
(Ⅰ)当点的中点时,试判断直线与平面的关系,并说明理由;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图:是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的任意一点,
(1)求证:平面.
(2)图中有几个直角三角形.

查看答案和解析>>

同步练习册答案