精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。

(Ⅰ)见解析;(Ⅱ)>=

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面,四边形中, ,, ,,E为中点.
(1)求证:CD⊥面PAC;(2)求:异面直线BE与AC所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形中(图1),的中点,将(图1)沿直线折起,使二面角(如图2)
(1)求证:平面
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求证:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求证:AD⊥平面SBC;
(II)试在SB上找一点E,使得BC//平面ADE,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在线段PD上存在点E使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只
有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图:是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的任意一点,
(1)求证:平面.
(2)图中有几个直角三角形.

查看答案和解析>>

同步练习册答案