精英家教网 > 高中数学 > 题目详情

(14分)(理)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC
⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小;
(Ⅲ)求点B到平面CMN的距离.

解法一:(Ⅰ)取AC中点D,连结SD、DB.

∵SA=SC,AB=BC,∴AC⊥SD且AC⊥BD,∴AC⊥平面SDB,又SB平面SDB,
∴AC⊥SB.
(Ⅱ)∵AC⊥平面SDB,AC平面ABC,∴平面SDB⊥平面ABC.过N作NE⊥BD于E,NE⊥平面ABC,过E作EF⊥CM于F,连结NF,则NF⊥CM.∴∠NFE为二面角
N-CM-B的平面角.∵平面SAC⊥平面ABC,SD⊥AC,
∴SD⊥平面ABC.又∵NE⊥平面ABC,∴NE∥SD.
∵SN=NB,∴NE=SD===
且ED=EB.在正△ABC中,由平几知识可求得EF=MB=,在Rt△NEF中,tan∠
NFE==2,∴二面角N-CM-B的大小是arctan2
(Ⅲ)在Rt△NEF中,NF==,∴SCMN=CM·NF=,S
 
CMB=BM·CM=2
设点B到平面CMN的距离为h,∵VB-CMN=VN-CMB,NE⊥平面CMB,∴SCMN·h=SCMB·NE,
∴h==.即点B到平面CMN的距离为
解法二:(Ⅰ)取AC中点O,连结OS、O      B.

∵SA=SC,AB=BC,∴AC⊥SO且AC⊥BO.
∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC∴SO⊥面ABC,∴SO⊥BO.
如图所示建立空间直角坐标系O-xyz.则A(2,0,0),B(0,2,0),C(-2,0,0),S(0,0,2),M(1,,0),N(0,).∴=(-4,0,0),=(0,2,2),
·=(-4,0,0)·(0,2,2)=0,∴AC⊥SB.
(Ⅱ)由(Ⅰ)得=(3,,0),=(-1,0,).
=(x,y,z)为平面CMN的一个法向量,则

取z=1,则x=,y=-,∴=(,-,1),
=(0,0,2)为平面ABC的一个法向量,
∴cos()==
∴二面角N-CM-B的大小为arccos
(Ⅲ)由(Ⅰ)(Ⅱ)得=(-1,,0),

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求证:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(本小题满分13分)如图,平面⊥平面,,,

直线与直线所成的角为,又。     
(1)求证:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在线段PD上存在点E使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只
有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知向量,则以为邻边的平行四边形的面积为(  )

A.B.C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知四棱锥中,侧棱平面,底面是平行四边形,分别是的中点.
(1)求证:平面
(2)当平面与底面所成二面角为时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,则sin〈〉的值为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

[2013·广州质检]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三个向量共面,则实数λ等于(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于(  )

A. B. C. D.1

查看答案和解析>>

同步练习册答案