(14分)(理)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC
⊥平面ABC,SA=SC=2
,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小;
(Ⅲ)求点B到平面CMN的距离.![]()
解法一:(Ⅰ)取AC中点D,连结SD、DB.![]()
∵SA=SC,AB=BC,∴AC⊥SD且AC⊥BD,∴AC⊥平面SDB,又SB
平面SDB,
∴AC⊥SB.
(Ⅱ)∵AC⊥平面SDB,AC
平面ABC,∴平面SDB⊥平面ABC.过N作NE⊥BD于E,NE⊥平面ABC,过E作EF⊥CM于F,连结NF,则NF⊥CM.∴∠NFE为二面角
N-CM-B的平面角.∵平面SAC⊥平面ABC,SD⊥AC,
∴SD⊥平面ABC.又∵NE⊥平面ABC,∴NE∥SD.
∵SN=NB,∴NE=
SD=![]()
=![]()
=
,
且ED=EB.在正△ABC中,由平几知
识可求得EF=
MB=
,在Rt△N
EF中,tan∠
NFE=
=2
,∴二面角N-CM-B的大小是arctan2
.
(Ⅲ)在Rt△NEF中,NF=
=
,∴S△CMN=
CM·NF=![]()
,S△
CMB=
BM·CM=2
.
设点B到平面CMN的距离为h,∵VB-CMN=VN-CMB,NE⊥平面CMB,∴
S△CMN·h=
S△CMB·NE,
∴h=
=
.即点B到平面CMN的距离为
.
解法二:(Ⅰ)取AC中点O,连结OS、O B.![]()
∵SA=
SC,AB=BC,∴AC⊥SO且AC⊥BO.
∵平面SAC⊥平面ABC,平面SAC
∩平面ABC=AC∴SO⊥面ABC,∴SO
⊥BO.
如图所示建立空间直角坐标系O-xyz.则A(2,0,0),B(0,2
,0),C(-2,0,0),S(0,0,2
),M(1,
,0),N(0,
,
).∴
=(-4,0,0),
=(0,2
,2
),
∵
·![]()
=(-4,0,0)·(0,2
,2
)=0,∴AC⊥SB.
(Ⅱ)由(Ⅰ)得
=(3,
,0),
=(-1,0,
).
设
=(x,y,z)为平面CMN的一个法向量,则![]()
取z=1,则x=
,y=-
,∴
=(
,-
,1),
又
=(0,0,2
)为平面ABC的一个法向量,
∴cos(
,
)=
=
.
∴二面角N-CM-B的大小为arccos
.
(Ⅲ)由(Ⅰ)(Ⅱ)得
=(-1,
,0),
解析
科目:高中数学 来源: 题型:解答题
(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.![]()
(1)求证:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在线段PD上存在点E
使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只
有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知四棱锥
中,侧棱
平面
,底面
是平行四边形,
,
,
,
分别是
的中点.
(1)求证:
平面![]()
(2)当平面
与底面
所成二面角为
时,求二面角
的大小.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
[2013·广州质检]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三个向量共面,则实数λ等于( )
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于( )
| A. | B. | C. | D.1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com