精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C-ANB1A1的体积.

(1)连接BC1和CB1交于O点,连接ON.
∵ABC-A1B1C1是正三棱柱,
∴O为BC1的中点.又N为棱AB的中点,
∴在△ABC1中,NO∥AC1,
又NO平面CNB1,
AC1平面CNB1,
∴AC1∥平面CNB1.
(2)=

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求证:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点.

(1)求证:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,分别为的中点。
(1)求证:平面
(2)若平面平面,且,求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(本小题满分13分)如图,平面⊥平面,,,

直线与直线所成的角为,又。     
(1)求证:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知四棱锥中,侧棱平面,底面是平行四边形,分别是的中点.
(1)求证:平面
(2)当平面与底面所成二面角为时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

[2013·广州质检]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三个向量共面,则实数λ等于(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案