精英家教网 > 高中数学 > 题目详情

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

【答案】B
【解析】解:根据等式左边的特点,各数是先递增再递减,
由于n=k,左边=12+22+…+(k﹣1)2+k2+(k﹣1)2+…+22+12
n=k+1时,左边=12+22+…+(k﹣1)2+k2+(k+1)2+k2+(k﹣1)2+…+22+12
比较两式,从而等式左边应添加的式子是(k+1)2+k2
故选B.
【考点精析】利用数学归纳法的定义对题目进行判断即可得到答案,需要熟知数学归纳法是证明关于正整数n的命题的一种方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;

(2)若在区间上不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=lg(3﹣4x+x2)的定义域为M,当x∈M时,则f(x)=2x+2﹣3×4x的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0,则不等式xf(x+1)<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为偶函数
(1)求实数a的值;
(2)记集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判断λ与E的关系;
(3)当x∈[ ](m>0,n>0)时,若函数f(x)的值域[2﹣3m,2﹣3n],求实数m,n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处取得极值.

1)求函数的解析式;

2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a>0, 方程 有且仅有两个不等实根,且较大的实根大于3,则实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式2x2﹣x﹣3>0解集为(
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在2016年的自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布直方图.

(1)为了能选拔出优秀的学生,该校决定在笔试成绩较高的第3组、第4组、第5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试;
(2)在(1)的前提下,学校决定在6名学生中随机抽取2名学生由考官A面试,求第4组至少有一名学生被考官A面试的概.

查看答案和解析>>

同步练习册答案