·ÖÎö £¨1£©ÀûÓü«×ø±êÓëÖ±½Ç×ø±êµÄ»¥»¯·½·¨£¬¿ÉµÃÖ±ÏßC1µÄÖ±½Ç×ø±ê·½³ÌºÍÔ²C2µÄÔ²Ðĵļ«×ø±ê£»
£¨2£©Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬ÀûÓù´¹É¶¨Àí£¬ÇóÏß¶ÎABµÄ³¤£®
½â´ð ½â£º£¨1£©¡ßÖ±ÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È+1=0£¬
¡àÖ±ÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪx-y+1=0£»
¡ßÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+2cos¦Á}\\{y=\sqrt{3}+2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
¡àÆÕͨ·½³ÌΪ£¨x+1£©2+£¨y-$\sqrt{3}$£©2=4£¬
¡àÔ²C2µÄÔ²ÐĵÄÖ±½Ç×ø±êΪ£¨-1£¬$\sqrt{3}$£©£¬¼«×ø±ê£¨2£¬$\frac{2¦Ð}{3}$£©£»
£¨2£©ÉèÖ±ÏßC1ºÍÔ²C2µÄ½»µãΪA£¬B£¬£¨-1£¬$\sqrt{3}$£©µ½Ö±Ïßx-y+1=0µÄ¾àÀëd=$\frac{|-1-\sqrt{3}+1|}{\sqrt{2}}$=$\frac{\sqrt{3}}{\sqrt{2}}$£¬
¡àÏß¶ÎABµÄ³¤2$\sqrt{4-\frac{3}{2}}$=$\sqrt{10}$£®
µãÆÀ ±¾Ì⿼²éÁËÔ²µÄ¼«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£¬$\frac{3}{2}$£© | B£® | £¨$\frac{1}{2}$£¬$\frac{3}{2}$] | C£® | £¨$\frac{1}{2}$£¬$\frac{3}{2}$£© | D£® | £¨$\frac{\sqrt{3}}{2}$£¬$\frac{3}{2}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2+$\sqrt{3}$ | B£® | $\sqrt{3}$ | C£® | $\frac{\sqrt{3}}{3}$ | D£® | 2-$\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¼òµ¥Ëæ»ú³éÑù | B£® | ³éÇ©·¨ | C£® | ϵͳ³éÑù | D£® | ·Ö²ã³éÑù |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com