精英家教网 > 高中数学 > 题目详情
9.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=|x|,则函数y=f(x)的图象与函数y=log4|x|的交点个数为(  )
A.2B.3C.6D.10

分析 画出这两个函数的图象,数形结合,可得函数y=f(x)的图象与函数y=log4|x|的交点个数.

解答 解:函数y=f(x)(x∈R)满足f(x+2)=f(x),
故函数f(x)的周期为2,又x∈[-1,1]时,f(x)=|x|,
可得函数f(x)在R上的图象,如图红色曲线所示:
而函数y=log4|x|为偶函数,如图蓝色图象所示:
函数y=f(x)的图象与函数y=log4|x|的交点个数为6,
故选:C.

点评 本题主要考查函数的图象,方程根的存在性以及个数判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能载一种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为(  )
A.420B.240C.360D.540

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.
(I)求实数a,b的值;
(Ⅱ)当a>0时,求曲线y=f(x)在点(-2,f(-2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$z=\frac{m+i}{1+i}$(i为虚数单位)是纯虚数,则复数z的共轭复数的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线x2=2py(p>0)的焦点为F(0,1),A,B为抛物线上不重合的两动点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,过A,B作抛物线的切线l1,l2,直线l1,l2交于点M.
(1)求抛物线的方程;
(2)问:直线AB是否过定点,若是,求出定点坐标,若不是,说明理由;
(3)三角形ABM的面积是否存在最小值,若存在,请求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学随机抽取50名高二学生调查其每天运动的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中运动的时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方图中x的值;
(Ⅱ)定义运动的时间不少于1小时的学生称为“热爱运动”,若该校有高一学生1200人,请估计有多少学生“热爱运动”;
(Ⅲ)设m,n表示在抽取的50人中某两位同学每天运动的时间,且已知m,n∈[40,60)∪[80,100),求事件“|m-n|>20”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$\frac{{sin{{40}°}-\sqrt{3}cos{{20}°}}}{{cos{{10}°}}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i:
(1)是纯虚数;
(2)对应的点在实轴上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=(a-1)ln x+$\frac{a}{x}$+bx+2(a,b∈R).
(1)若函数f(x)的图象在点(1,f(1))处的切线方程为x-y+1=0,求实数a,b的值;
(2)已知b=1,当x>1时,f(x)>0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案