精英家教网 > 高中数学 > 题目详情
17.已知复数$z=\frac{m+i}{1+i}$(i为虚数单位)是纯虚数,则复数z的共轭复数的虚部是(  )
A.-1B.1C.-iD.i

分析 由复数代数形式的乘除运算化简复数$z=\frac{m+i}{1+i}$,结合已知条件求出m的值,然后代入复数$z=\frac{m+i}{1+i}$化简即可求出z,则复数z的共轭复数的虚部可求.

解答 解:∵$z=\frac{m+i}{1+i}$=$\frac{(m+i)(1-i)}{(1+i)(1-i)}=\frac{1+m+(1-m)i}{2}$=$\frac{1+m}{2}+\frac{1-m}{2}i$是纯虚数,
∴$\left\{\begin{array}{l}{\frac{1+m}{2}=0}\\{\frac{1-m}{2}≠0}\end{array}\right.$,解得m=-1.
∴$z=\frac{-1+i}{1+i}=\frac{(-1+i)(1-i)}{(1+i)(1-i)}=\frac{2i}{2}=i$.
则$\overline{z}=-i$.
∴复数z的共轭复数的虚部是-1.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知复数z满足|z|=1,又u=z2-i+1,则|u|的取值范围是[$\sqrt{2}$-1,$\sqrt{2}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知10件产品中有3件次品,若任意抽取3件进行检验,则其中至少有一件次品的概率是$\frac{17}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>b,函数f(x)=(x-a)(x-b)的图象如图所示,则函数y=a(x-b)的图象可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线Г:y2=12x的焦点为F,斜率为k的直线l与抛物线Г交于A、B两点,若线段AB的垂直平分线的横截距为a(a>0),n=|AF|+|BF|,则2a-n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,四边形ABCD中,$\overrightarrow{OA}+\overrightarrow{AB}-\overrightarrow{OB}$=(  )
A.$\overrightarrow{CB}$B.$\overrightarrow{AC}$C.$\overrightarrow{BC}$D.$\overrightarrow O$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=|x|,则函数y=f(x)的图象与函数y=log4|x|的交点个数为(  )
A.2B.3C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x|x-a|+2x(a∈R)
(1)当a=4时,解不等式f(x)≥8;
(2)当a∈[0,4]时,求f(x)在区间[3,4]上的最小值;
(3)若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有3个不相等的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(Ⅰ)根据直方图估计这个开学季内市场需求量x的平均数和众数;
(Ⅱ)将y表示为x的函数;
(Ⅲ)根据频率分布直方图估计利润y不少于1350元的概率.

查看答案和解析>>

同步练习册答案