精英家教网 > 高中数学 > 题目详情
12.已知抛物线Г:y2=12x的焦点为F,斜率为k的直线l与抛物线Г交于A、B两点,若线段AB的垂直平分线的横截距为a(a>0),n=|AF|+|BF|,则2a-n=6.

分析 抛物线C:y2=12x的焦点为F(3,0),准线方程为x=-3,利用n=|MF|+|NF|,由抛物线的定义可得n=xM+3+xN+3=2x0+6,求出线段MN的垂直平分线方程,确定线段MN的垂直平分线与x轴交点的横坐标a,即可得出结论.

解答 解:抛物线C:y2=12x的焦点为F(3,0),准线方程为x=-3.设A(x1,y1),B(x2,y2),
设AB的中点坐标为(x0,y0),2x0=x1+x2,2y0=y1+y2
∵n=|AF|+|BF|,
∴由抛物线的定义可得n=x1+3+x2+3=2x0+6.
线段AB的垂直平分线方程为y-y0=-$\frac{1}{k}$(x-x0),
令y=0,x=ky0+x0=a,
则$\left\{\begin{array}{l}{{y}_{1}^{2}=12{x}_{1}}\\{{y}_{2}^{2}=12{x}_{2}}\end{array}\right.$,两式相减得(y1+y2)(y1-y2)=12(x1-x2
由k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,
∴ky0=6,
∴a=6+x0
∴2a-n=6.
故答案为6.

点评 本题考查抛物线的方程与性质,考查抛物线的定义,考查点差法的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某样本中共有5个个体,其中四个值分别为0,1,2,3,第五个值丢失,但该样本的平均值为1,则样本方差为(  )
A.2B.$\frac{6}{5}$C.$\sqrt{2}$D.$\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\sqrt{2-{x^2}}$-x+b有一个零点,则实数b的取值范围为{2}∪($-\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值4.
(I)求实数a,b的值;
(Ⅱ)当a>0时,求曲线y=f(x)在点(-2,f(-2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,直线l:y=x+2与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,设F1,F2分别是椭圆的左右焦点.
(1)求椭圆C的方程;
(2)过F1作直线m与曲线C交于P、Q两点,求△PQF2的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数$z=\frac{m+i}{1+i}$(i为虚数单位)是纯虚数,则复数z的共轭复数的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线x2=2py(p>0)的焦点为F(0,1),A,B为抛物线上不重合的两动点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,过A,B作抛物线的切线l1,l2,直线l1,l2交于点M.
(1)求抛物线的方程;
(2)问:直线AB是否过定点,若是,求出定点坐标,若不是,说明理由;
(3)三角形ABM的面积是否存在最小值,若存在,请求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$\frac{{sin{{40}°}-\sqrt{3}cos{{20}°}}}{{cos{{10}°}}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A={y|y=x${\;}^{\frac{1}{2}}$,0≤x≤1},B={y|y=kx+1,x∈A},若A⊆B,则实数k的取值范围为(  )
A.k=-1B.k<-1C.-1≤k≤1D.k≤-1

查看答案和解析>>

同步练习册答案