精英家教网 > 高中数学 > 题目详情

本题有⑴、⑵、⑶三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)(本小题满分7分)选修4—2:矩阵与变换
已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M。
(2)(本小题满分7分)选修4—4:坐标系与参数方程
过点M(3,4),倾斜角为的直线与圆C:为参数)相交于A、B两点,试确定的值。
(3)(本小题满分7分)选修4—5:不等式选讲
已知实数满足,试确定的最大值。



由①②联立解得,∴…………7分

解析

练习册系列答案
相关习题

科目:高中数学 来源:2011届福建省泉州外国语中学高三上学期期中考试数学理卷 题型:解答题

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中
(1)(本题满分7分)选修4一2:矩阵与变换
求矩阵的特征值及对应的特征向量。
(2)(本题满分7分)选修4一4:坐标系与参数方程
已知直线的参数方程:为参数)和圆的极坐标方程:
(I)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
(II)判断直线和圆的位置关系
(3)(本题满分7分)选修4一5:不等式选讲
已知函数. 若不等式恒成立,求实数的范围。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三5月月考理科数学试卷(解析版) 题型:解答题

本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-2:矩阵与变换选做题

已知矩阵A=有一个属于特征值1的特征向量.  

(Ⅰ) 求矩阵A;

(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积. 

(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为

(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.

(3)(本小题满分7分)选修4-5:不等式选讲选做题

已知函数,不等式上恒成立.

(Ⅰ)求的取值范围;

(Ⅱ)记的最大值为,若正实数满足,求的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二下学期期中理科数学试卷(解析版) 题型:解答题

(本题满分14分)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1L2两条路线(如图),L1路线上有A1A2A3三个路口,各路口遇到红灯的概率均为L2路线上有B1B2两个路口,各路口遇到红灯的概率依次为

(1)若走L1路线,求最多遇到1次红灯的概率;

(2)若走L2路线,求遇到红灯次数的数学期望;

(3)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期期中考试数学理卷 题型:解答题

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中

(1)(本题满分7分)选修4一2:矩阵与变换

   求矩阵的特征值及对应的特征向量。

    

(2)(本题满分7分)选修4一4:坐标系与参数方程

  已知直线的参数方程:为参数)和圆的极坐标方程:

(I)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

(II)判断直线和圆的位置关系

 

(3)(本题满分7分)选修4一5:不等式选讲

 已知函数. 若不等式恒成立,求实数的范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.

   1.(本小题满分7分) 选修4一2:矩阵与变换

   如果曲线在矩阵的作用下变换得到曲线,   求的值。

 

   2.(本小题满分7分) 选修4一4:坐标系与参数方程

已知曲线的极坐标方程是,直线的参数方程是为参数).

   (1)将曲线的极坐标方程化为直角坐标方程;O

   (2)设直线轴的交点是是曲线上一动点,求的最大值.

 

3.(本小题满分7分)选修4-5:不等式选讲

    设函数

   (1)解不等式;     (2)若的取值范围。

查看答案和解析>>

同步练习册答案