【题目】设函数, ().
(1)求函数的单调增区间;
(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.
【答案】(1)当时, 的单调增区间为; 时, 的单调增区间为;(2)0.
【解析】试题分析:(Ⅰ)先求函数的导函数,原函数的单调增区间即为使导函数大于零的区间,根据导函数分段讨论 的不同取值范围时的单调增区间即可.
(Ⅱ)单调递增,存在唯一,使得,即,当时, ,当时, ,所以 求得的范围,得到的范围,得到最小整数值.
试题解析:(1)()
①当时,由,解得;
②当时,由,解得;
③当时,由,解得;
综上所述,
当时, 的单调增区间为;
时, 的单调增区间为.
(2)当时, , , ,
所以单调递增, , ,
所以存在唯一,使得,即,
当时, ,当时, ,
所以
,
记函数,则在上单调递增,
所以,即,
由,且为整数,得,
所以存在整数满足题意,且的最小值为0.
点晴:本题主要考查导数的单调性,导数与极值点、不等式等知识. 解答此类问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.
科目:高中数学 来源: 题型:
【题目】下列说法中正确的有( )
①幂函数的图象一定不过第四象限;
②已知常数a>0且a≠1,则函数f(x)=ax﹣1﹣1恒过定点(1,0);
③若存在x1 , x2∈I,当x1<x2时,f(x1)<f(x2),则y=f(x)在I上是增函数;
④ 的单调减区间是(﹣∞,0)∪(0,+∞).
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1= ,an= (n≥2,n∈N+).
(1)求a2 , a3 , a4的值,并猜想数列{an}的通项公式an .
(2)用数学归纳法证明你猜想的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
( I)判断f(x)的奇偶性;
( II)求证:f(x)+f( )为定值;
(III)求 + + +f(1)+f(2015)+f(2016)+f(2017)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙丙三人在进行一项投掷骰子游戏中规定:若掷出1点,甲得1分,若掷出2点或3点,乙得1分;若掷出4点或5点或6点,丙得1分,前后共掷3次,设x,y,z分别表示甲、乙、丙三人的得分.
(1)求x=0,y=1,z=2的概率;
(2)记ξ=x+z,求随机变量ξ的概率分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{fn(x)}满足f1(x)= (x>0),fn+1(x)=f1[fn(x)],
(1)求f2(x),f3(x),并猜想fn(x)的表达式;
(2)用数学归纳法证明对fn(x)的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】医院到某社区检查老年人的体质健康情况,从该社区全体老人中,随机抽取12名进行体质健康测试,测试成绩(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根据老年人体质健康标准,成绩不低于80的为优良.
(1)将频率视为概率,根据样本估计总体的思想,在该社区全体老年人中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(2)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的人数,求ξ的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com