精英家教网 > 高中数学 > 题目详情

【题目】已知{fn(x)}满足f1(x)= (x>0),fn+1(x)=f1[fn(x)],
(1)求f2(x),f3(x),并猜想fn(x)的表达式;
(2)用数学归纳法证明对fn(x)的猜想.

【答案】
(1)

解: 猜想: ,(n∈N*


(2)

解:下面用数学归纳法证明 ,(n∈N*

①当n=1时, ,显然成立;②假设当n=k(k∈N*)时,猜想成立,即

则当n=k+1时,

即对n=k+1时,猜想也成立;

结合①②可知,猜想 对一切n∈N*都成立


【解析】(1)依题意,计算f2(x)=f1[f1(x)]可求得f2(x),同理可求f3(x);(2)由(1)可猜想 ,然后用数学归纳法证明即可.
【考点精析】根据题目的已知条件,利用归纳推理和数学归纳法的定义的相关知识可以得到问题的答案,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理;数学归纳法是证明关于正整数n的命题的一种方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用min{a,b,c}表示a,b,c三个数中的最小值,设f(x)=min{2x , x+2,10﹣x}(x≥0),则f(x)的最大值为(
A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(1)求函数的单调增区间;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一条巡逻船由南向北行驶,在处测得山顶在北偏东方向上,匀速向北航行分钟到达处,测得山顶位于北偏东方向上,此时测得山顶的仰角,若山高为千米,

(1)船的航行速度是每小时多少千米?

(2)若该船继续航行分钟到达处,问此时山顶位于处的南偏东什么方向?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤x<6},B={y|y=2x , 2≤x<3},U=R.
(1)求A∪B;
(2)求(UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题正确的个数(
①用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数a,b,c中恰有一个奇数”时正确的反设为“自然数a,b,c中至少有两个奇数或都是偶数”;
②在复平面内,表示两个共轭复数的点关于实轴对称;
③在回归直线方程 =﹣0.3x+10中,当变量x每增加一个单位时,变量 平均增加0.3个单位;
④抛物线y=x2过点( ,2)的切线方程为2x﹣y﹣1=0.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示三角形数阵中,aij为第i行第j个数,若amn=2017,则实数对(m,n)为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,圆,以动点为圆心的圆经过点,且圆与圆内切.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)若直线过点,且与曲线交于两点,则在轴上是否存在一点,使得轴平分?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,左焦点为F(﹣1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)求k的取值范围;
(3)在y轴上,是否存在定点E,使 恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案