精英家教网 > 高中数学 > 题目详情
20.某林场有树苗20000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为100的样本,则样本中松树苗的数量为(  )
A.15B.20C.25D.30

分析 根据分层抽样的定义建立比例关系即可得到结论.

解答 解:由分层抽样的定义得样本中松树苗的数量为$\frac{100}{20000}×4000$=20,
故选:B.

点评 本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.4个不同的球放入编号为1,2,3,4的四个盒子中,每个盒子中球的个数不大于盒子的编号,则共有175种方法(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.与直线l:3x-4y+5=0平行且过点(-1,2)的直线方程为(  )
A.4x-3y+10=0B.4x-3y-11=0C.3x-4y-11=0D.3x-4y+11=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin30°cos15°+cos30°sin15°的值是(  )
A.$\sqrt{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列不等式中恒成立的是(  )
A.$2-x-\frac{4}{x}$≤-2B.$sinx+\frac{1}{sinx}$≥2C.$\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$≥2D.$\frac{{{x^2}+2}}{{\sqrt{{x^2}+2}}}$≥$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=loga(x3-3ax)(a>0,a≠1)在区间(-$\sqrt{2}$,-1)内单调递减,a的取值范围是(  )
A.[2,+∞)B.(1,$\sqrt{2}$)C.[$\frac{2}{3}$,1)D.[$\frac{2}{3}$,1)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知复数$z=-\frac{1+i}{{\sqrt{2}}}$,则1+z50+z100=i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.生物兴趣小组的同学到野外调查某种植物的生长情况,共测量了k∈Z株该植物的高度(单位:厘米),获得数据如下:
6,7,8,9,10,14,16,17,17,18,19,20,20,21,24,26,26,27,28,29,29,30,30,30,31,31,33,36,37,41.
根据上述数据得到样本的频率分布表如下:
分组频数频率
[5,15]60.2
(15,25]90.3
(25,35]n1f1
(35,45]n2f2
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)用(2)的频率分布直方图估计该植物生长高度的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=$\frac{1}{3}{x^3}$-4x+1的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案