精英家教网 > 高中数学 > 题目详情
9.某单位有20名职工,将其编号为01~20,现用随机数表从中抽取5名职工进行座谈会,若抽取的第一名职工的编号是如下随机数表中的第一行,第5列和第6列,则抽取的第5名职工的编号为(  )
A.17B.13C.03D.04

分析 随机数表法也是简单随机抽样的一种方法,采用随机数表法读数时可以从左向右,也可以从右向左或者从上向下等等.应该注意的是,在读数中出现的相同数据只取一次,超过编号的数据要剔除.

解答 解:随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,
第一个数为17,然后是12,13,20,03,
故选出来的第5个职工的编号是03,
故选:C.

点评 本题主要考查抽样方法,随机数表的使用,考生不要忽略.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.解下列各不等式:
(1)x2-3x≥0;
(2)x2-x-6<0;
(3)x2-x+5≤0;
(4)2x2+3x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知向量$\overrightarrow{m}$=(AB,cosB),$\overrightarrow{n}$=(AC,cosC),若$\overrightarrow{m}$∥$\overrightarrow{n}$,则△ABC为(  )
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.两个非零向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线.
(1)若$\overrightarrow{AB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{BC}$=2$\overrightarrow{a}$+8$\overrightarrow{b}$,$\overrightarrow{CD}$=3($\overrightarrow{a}$-$\overrightarrow{b}$),求证:A、B、D三点共线;
(2)求实数k使k$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$+k$\overrightarrow{b}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知在三棱锥S-ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:
(1)面SAC⊥面SBC
(2)AD⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.指出函数f(x)=x+$\frac{1}{x}$在(-∞,-1]上的单调性,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sin2x的图象向右平移$\frac{π}{4}$个单位,再向上平移1个单位,所得函数图象对应的解析式为(  )
A.y=sin(2x-$\frac{π}{4}$)+1B.y=2cos2xC.y=1-cos2xD.y=-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)的定义域D={x|x≠0},且满足对任意x都有:f(x1•x2)=f(x1)+f(x2
(1)求f(1),f(-1)的值.
(2)证明f(x)为偶函数;
(3)如果x>1时,f(x)>0,证明f(x)在(0,+∞)为增函数,并解不等式:$f(2-\frac{1}{x})+f(x)≤0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}\right.$在x∈(-∞,+∞)上单调递增,则实数a的取值范围是(  )
A.[2,3]B.(1,8)C.(1,5]D.[4,8)

查看答案和解析>>

同步练习册答案