精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x(x-6)+alnx在x∈(2,+∞)上不具有单调性.
(I)求实数a的取值范围;
(II)若f'(x)是f(x)的导函数,设数学公式,试证明:对任意两个不相等正数x1、x2,不等式数学公式恒成立.

解:(I)
∵f(x)在x∈(2,+∞)上不具有单调性,∴在x∈(2,+∞)上f'(x)有正也有负也有0,
即二次函数y=2x2-6x+a在x∈(2,+∞)上函数值有负数.
∵y=2x2-6x+a是对称轴是,开口向上的抛物线,
∴2•22-6•2+a<0的实数a的取值范围(-∞,4)
故答案为(-∞,4).

(II)由(I)
∵a<4,∴,(8分)
,h(x)在是减函数,在增函数,
时,h(x)取最小值∴从而g'(x),∴
函数是增函数,x1、x2是两个不相等正数,
不妨设x1<x2,则

∵x2-x1>0,∴
,即
分析:(Ⅰ)求函数在x∈(2,+∞)上不具有单调性时实数a的取值范围,可以考虑求导函数的方法,则导函数在(2,+∞)上即有正也有负,即有零点,求出范围即可.
(Ⅱ)由(I)求出g(x)的函数表达式,然后求导函数h(x),通过判断h(x)的单调性求出g'(x),然后可以得到函数是增函数,对任意两个不相等正数x1、x2,即可得到不等式成立.
点评:此题主要考查不等式的证明问题,其中涉及到利用求导函数的方法求函数单调性的问题,涵盖的考点较多,技巧性强,属于综合性试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案