精英家教网 > 高中数学 > 题目详情
2.已知{an}(n=1,2,3,…)是由非负整数组成的无穷数列,该数列前n项的最大值记为A,第n项之后各项an+1,an+2…的最小值记为Bn,dn=An-Bn
(1)若{an}满足a1=3,当n≥2时,an=3n-1,写出d1,d2,d3的值;
(2)设d是非负整数,证明:dn=-d的充分必要条件为{an}是公差为d的等差数列.

分析 (1)由an}满足a1=3,当n≥2时,an=3n-1,可知数列{an}为单调递增数列.可得An,Bn,dn=An-Bn
(2)充分性:设{an}是公差为d的等差数列,d是非负整数.则An=an,Bn=an+1,即可得出.
必要性:若 dn=An-Bn=-d,(n=1,2,3,4…).假设ak是第一个使ak-ak-1<0的项,则dk=Ak-Bk=ak-1-Bk≥ak-1-ak>0,这与dn=-d≤0相矛盾,故{an}是一个不减的数列.即可证明.

解答 (1)解:∵an}满足a1=3,当n≥2时,an=3n-1,可知数列{an}为单调递增数列.
∴当n=1时,A1=a1=3;B1=a2=32-1=8,d1=A1-B1=3-8=-5.
当n=2时,A2=a2=8;B2=a3=33-1=26,d2=A2-B2=8-26=-18.
当n=3时,A3=a3=26;B3=a4=34-1=80,d3=A3-B3=26-80=-54.
(2)证明:充分性:设{an}是公差为d的等差数列,d是非负整数.
则An=an,Bn=an+1,∴dn=An-Bn=an-an+1=-d.
必要性:若 dn=An-Bn=-d,(n=1,2,3,4…).假设ak是第一个使ak-ak-1<0的项,
则dk=Ak-Bk=ak-1-Bk≥ak-1-ak>0,这与dn=-d≤0相矛盾,故{an}是一个不减的数列.
∴dn=An-Bn=an-an+1=-d,即 an+1-an=d,故{an}是公差为d的等差数列.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、新定义、反证法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2bsinA,则B=$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在△ABC中,C=$\frac{π}{3}$,BC=4,点D在边AC上,AD=DB,DE⊥AB,E为垂足,若DE=2$\sqrt{2}$,求cosA=$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点A,B,C在圆O:x2+y2=2上运动,且AB⊥BC,若点P的坐标为(1,1),则|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的取值范围是(  )
A.[0,4$\sqrt{2}$]B.[2,4]C.[2$\sqrt{2}$,4$\sqrt{2}$]D.[2$\sqrt{2}$,3$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线的非零向量,且$\overrightarrow{a}$═$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$.
(1)证明:$\overrightarrow{a}$,$\overrightarrow{b}$可以作为一组基底;
(2)以$\overrightarrow{a}$,$\overrightarrow{b}$为基底,求向量$\overrightarrow{c}$=3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$的分解式;
(3)若4$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,求λ,μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知α,β是锐角,α+β≠$\frac{π}{2}$,且满足3sinβ=sin(2α+β).
(1)求证:tan(α+β)=2tanα;
(2)求证:tanβ$≤\frac{\sqrt{2}}{4}$,并求等号成立时tanα与tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2-4x+3(  )
A.在(-∞,2)内是减函数B.在(-∞,4)内是减函数
C.在(-∞,0)内是减函数D.在(-∞,+∞)内是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.10的-2次幂等于0.01;10的0.699次幂等于5(注lg2=0.3010)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知θ为锐角,且sinθ:cos$\frac{θ}{2}$=8:5,求sinθcosθ

查看答案和解析>>

同步练习册答案