精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:(n∈N*).
【答案】分析:(1)an+1=can+1-c,可得an+1-1=c(an-1),从而可得a≠1时,{an-1}是等比数列,即可求{an}通项公式;
(2)求出数列{bn}的通项,利用错位相减法,可求数列的和;
(3)确定数列{dn}的通项.利用放缩法求和,即可证得结论.
解答:(1)证明:∵an+1=can+1-c,∴an+1-1=c(an-1)
∴a≠1时,{an-1}等比数列.
∵a1-1=a-1,∴,∴
(2)解:由(1)可得

∴Sn=
Sn=
两式相减可得Sn==1-

(3)证明:


点评:本题考查等比数列的证明,考查数列的通项与求和,考查不等式的证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案