【题目】在
中,内角
所对的边分别为
,已知
.
(Ⅰ)求角
的值;
(Ⅱ)记
,求
的取值范围.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】
(I)已知等式利用正弦定理化简,整理后根据sinA不为0求出cosB的值,即可确定出B的度数;
(II)B=
,可得A+C=
.
∈(-
,
).令cos
=t∈(
,1].z=
=
=
,利用双勾函数单调性即可得出范围.
(I)已知等式
=
,利用正弦定理化简得:
=
,
即2sinAcosB-sinBcosC=cosBsinC,
可得:2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,
∵sinA≠0,
∴cosB=
,
∵B∈(0,π),
∴B=
.
(II)因为B=
,所以A+C=
.所以
∈(-
,
).
令cos
=t∈(
,1].
z=
=
=
=
,
可得t=
时,z取得最小值
,
时,z取得最大值![]()
∴z的取值范围时
.
科目:高中数学 来源: 题型:
【题目】已知幂函数
满足
.
(1)求函数
的解析式;
(2)若函数
,是否存在实数
使得
的最小值为0?若存在,求出
的值;若不存在,说明理由;
(3)若函数
,是否存在实数
,使函数
在
上的值域为
?若存在,求出实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在实数,使得
成立,则x0称为f(x)的“不动点”.
(1)设函数
,求
的不动点;
(2)设函数
,若对于任意的实数b,函数f(x)恒有两相异的不动点,求实数a的取值范围;
(3)设函数
定义在
上,证明:若
存在唯一的不动点,则
也存在唯一的不动点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π
+8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某港口
要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口
北偏西
且与该港口相距20海里的
处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以
海里/时的航行速度匀速行驶,经过
小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2016年6月英国“脱欧”公投前夕,为了统计该国公民是否有“留欧”意愿,该国某中学数学兴趣小组随机抽查了50名不同年龄层次的公民,调查统计他们是赞成“留欧”还是反对“留欧”.现已得知50人中赞成“留欧”的占60%,统计情况如下表:
年龄层次 | 赞成“留欧” | 反对“留欧” | 合计 |
18岁—19岁 | 6 | ||
50岁及50岁以上 | 10 | ||
合计 | 50 |
(1)请补充完整上述列联表;
(2)请问是否有97.5%的把握认为赞成“留欧”与年龄层次有关?请说明理由.
参考公式与数据:
,其中![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com