【题目】设函数,是函数的导数.
(1)若,证明在区间上没有零点;
(2)在上恒成立,求的取值范围.
【答案】(1)证明见解析(2)
【解析】
(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,
函数在上单调递增,在上单调递减,而,,可知在区间上恒成立,即在区间上没有零点;
(2)由题意可将转化为,构造函数,
利用导数讨论研究其在上的单调性,由,即可求出的取值范围.
(1)若,则,,
设,则,,
,故函数是奇函数.
当时,,,这时,
又函数是奇函数,所以当时,.
综上,当时,函数单调递增;当时,函数单调递减.
又,,
故在区间上恒成立,所以在区间上没有零点.
(2),由,所以恒成立,
若,则,设,
.
故当时,,又,所以当时,,满足题意;
当时,有,与条件矛盾,舍去;
当时,令,则,
又,故在区间上有无穷多个零点,
设最小的零点为,
则当时,,因此在上单调递增.
,所以.
于是,当时,,得,与条件矛盾.
故的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x3+1+a(x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[0,e3﹣4]B.[0,2]
C.[2,e3﹣4]D.[e3﹣4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,,,,是的中点,E是棱上一动点.
(1)若E是棱的中点,证明:平面;
(2)求二面角的余弦值;
(3)是否存在点E,使得,若存在,求出E的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗、、.经过引种实验发现,引种树苗的自然成活率为,引种树苗、的自然成活率均为.
(1)任取树苗、、各一棵,估计自然成活的棵数为,求的分布列及其数学期望;
(2)将(1)中的数学期望取得最大值时的值作为种树苗自然成活的概率.该农户决定引种棵种树苗,引种后没有自然成活的树苗有的树苗可经过人工栽培技术处理,处理后成活的概率为,其余的树苗不能成活.
①求一棵种树苗最终成活的概率;
②若每棵树苗引种最终成活可获利元,不成活的每棵亏损元,该农户为了获利期望不低于万元,问至少要引种种树苗多少棵?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥中, 平面, ,点分别为的中点,设直线与平面交于点.
(1)已知平面平面,求证: .
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率,点,点、分别为椭圆的上顶点和左焦点,且.
(1)求椭圆的方程;
(2)若过定点的直线与椭圆交于,两点(在,之间)设直线的斜率,在轴上是否存在点,使得以,为邻边的平行四边形为菱形?如果存在,求出的取值范围?如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com