精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)关于的不等式的解集为,求的值;

(2)若函数的图象与轴围成图形的面积不小于50,求的取值范围.

【答案】(1) (2)

【解析】

(1)当时,求得不等式的解集为空集,当时,求得函数的单调性,根据不等式的解集为,列出方程组,即可求解;

(2)由(1)知,当时不合题意;当时,,当时,求得函数的图象与轴的交点为,得到关于面积的不等式,即可求解.

(1)当时,,则关于的不等式的解集为空集,不合题意,

时,

所以函数在区间上单调递减,在区间上单调递增,

因为关于的不等式的解集为

所以,即,解得.

(2)设函数的图象与轴围成图形面积为

由(1)知,当时,,不合题意;

时,

时,

时,函数的图象与轴的交点为

此时函数的图象与轴围成图形面积为

化简得,解得(舍去),

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是函数的导数.

1)若,证明在区间上没有零点;

2)在恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数满足:对任何,都有,且当时,.在下列结论:

1)对任何,都有;(2)任意,都有

3)函数的值域是

4函数在区间上单调递减的充要条件是存在,使得

其中正确命题是(

A.1)(2B.1)(2)(3C.1)(3)(4D.2)(3)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;②将某校参加摸底测试的1200名学生编号为123,…,1200,从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为92;③线性回归方程必经过点;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDADCDADBCPA=AD=CD=2BC=3EPD的中点,点FPC上,且

(Ⅰ)求证:CD⊥平面PAD

(Ⅱ)求二面角F–AE–P的余弦值;

(Ⅲ)设点GPB上,且.判断直线AG是否在平面AEF内,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的极坐标方程为,直线的参数方程为为参数,).

(1)求曲线和直线的直角坐标方程;

(2)若直线与曲线交于两点,且,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数的定义域是,对任意的,有.时,.给出下列四个关于函数的命题:

①函数是奇函数;

②函数是周期函数;

③函数的全部零点为

④当算时,函数的图象与函数的图象有且只有4个公共点.

其中,真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案