精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为的函数满足:对任何,都有,且当时,.在下列结论:

1)对任何,都有;(2)任意,都有

3)函数的值域是

4函数在区间上单调递减的充要条件是存在,使得

其中正确命题是(

A.1)(2B.1)(2)(3C.1)(3)(4D.2)(3)(4

【答案】C

【解析】

根据题设条件,结合函数的周期性和单调性,合理赋值,逐项判定,即可求解.

对于(1)中,对任何,都有,且当时,

所以,所以是正确的;

对于(2)中,因为当时,

可得,解得

即当时,,所以不正确;

对于(3)中,取,则

可得

从而函数的值域为,所以是正确的;

对于(4)中,令,则

所以

所以函数在区间上单调递减,而必要性显然成立,所以是正确的,

所以正确的命题为(1)(3)(4.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,的中点,E是棱上一动点.

(1)若E是棱的中点,证明:平面

(2)求二面角的余弦值;

(3)是否存在点E,使得,若存在,求出E的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,点,点分别为椭圆的上顶点和左焦点,且.

1)求椭圆的方程;

2)若过定点的直线与椭圆交于两点(之间)设直线的斜率,在轴上是否存在点,使得以为邻边的平行四边形为菱形?如果存在,求出的取值范围?如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调递增区间;

2)若函数有两个极值点恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,设函数

1)求函数的单调区间;

2)当时,若对任意的,均有,求的取值范围.

注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和为,若存在正整数,且,使得同时成立,则称数列数列”.

1)若首项为,公差为的等差数列数列,求的值;

2)已知数列为等比数列,公比为.

①若数列数列,求的值;

②若数列数列,求证:为奇数,为偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,极坐标系中,弧所在圆的圆心分别为,曲线是弧,曲线是弧,曲线是弧,曲线是弧.

1)分别写出的极坐标方程;

2)直线的参数方程为为参数),点的直角坐标为,若直线与曲线有两个不同交点,求实数的取值范围,并求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)关于的不等式的解集为,求的值;

(2)若函数的图象与轴围成图形的面积不小于50,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

同步练习册答案