分析 (1)依题意,可求得f′(1),从而由直线的点斜式可得函数所对应曲线在点(1,4)处的切线方程;
(2)通过f′(x)>0可求其递增区间,通过f′(x)<0可求其单调减区间.
解答 解:(1)∵f(x)=x2-8lnx+3,
∴f′(x)=$\frac{2{x}^{2}-8}{x}$(x>0),
∴f′(1)=-6,
∴曲线y=f(x)在点(1,4)处的切线方程为y-4=-6(x-1),即6x+y-10=0;
(2)令f′(x)>0,可得x>2,f′(x)<0,可得0<x<2,
∴函数的单调递增区间是(2,+∞),单调递减区间是(0,2).
点评 本题考查利用导数研究函数的单调性,考查利用导数研究曲线上某点切线方程,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | N∈M | B. | M∪N=R | C. | M∩N={x|0<x<1} | D. | M∩N=∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$=$\overrightarrow{b}$ | B. | $\overrightarrow{a}$•$\overrightarrow{b}$=1 | C. | $\overrightarrow{{a}^{2}}$≠$\overrightarrow{{b}^{2}}$ | D. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com