分析 先利用不等式ax2+bx+c>0(a≠0)的解为α<x<β,其中β>α>0,求出系数a<0,c<0以及α+β=-$\frac{b}{a}$,αβ=$\frac{c}{a}$,再把cx2+bx+a=0的两根用α,β表示出来,再利用c<0,即可求出不等式cx2+bx+a<0的解.
解答 解:因为不等式ax2+bx+c>0(a≠0)的解为α<x<β,其中β>α>0,
所以有α+β=-$\frac{b}{a}$,α•β=$\frac{c}{a}$,且a<0,c<0.
即有b=-a(α+β),c=aαβ,
不等式cx2+bx+a<0即为aαβx2-a(α+β)x+a<0,
即为αβx2-(α+β)x+1>0,
即有(αx-1)(βx-1)>0,
由β>α>0,可得$\frac{1}{α}$>$\frac{1}{β}$,
可得不等式cx2+bx+a<0的解为x>$\frac{1}{α}$或x<$\frac{1}{β}$.
点评 本题主要考查一元二次不等式的解法及其应用..一元二次不等式的解集由对应函数的开口方向和对应方程的根共同决定.所以在解一元二次不等式时,一定要确定对应函数的开口方向.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{-1+\sqrt{5}}{2}$ | B. | -1+$\sqrt{5}$ | C. | $\frac{-1+\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com