分析 (1)根据二次函数f(x)=3x2-2mx-1恒过定点(0,-1)且开口向上,要使得存在x0∈(-1,2),使f(x0)≥0,只要f(-1)和f(2)中有一个大于0即可,列出不等式,解出m的取值范围为R得答案;
(2)利用更换主元的解题思想方法,把对一切m∈(-1,2)恒有f(x)>0,化为关于x的不等式组$\left\{\begin{array}{l}{g(-1)=2x+3{x}^{2}-1≥0}\\{g(2)=-4x+3{x}^{2}-1≥0}\end{array}\right.$,求解不等式组得答案.
解答 (1)证明:若存在x0∈(-1,2),使f(x0)≥0,
根据二次函数f(x)=3x2-2mx-1恒过定点(0,-1)且开口向上,
∴f(-1)>0或f(2)>0,即2m+2>0或-4m+11>0,解得m∈R.
∴对于任意实数m,一定存在x0∈(-1,2),使得f(x0)≥0;
(2)解:令g(m)=-2xm+3x2-1,
∵对一切m∈(-1,2)恒有f(x)>0,即恒有g(m)>0.
∴$\left\{\begin{array}{l}{g(-1)=2x+3{x}^{2}-1≥0}\\{g(2)=-4x+3{x}^{2}-1≥0}\end{array}\right.$,解得:x≤-1或x≥$\frac{2+\sqrt{7}}{3}$.
∴实数x的取值范围是(-∞,-1]∪[$\frac{2+\sqrt{7}}{3},+∞$).
点评 本题考查了二次函数的性质,以及函数的恒成立问题.对于恒成立问题,一般选用参变量分离,转化成求函数的最值.本题同时考查了更换主元的解题思想方法,在应用时要注意不等式成立的条件.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(4x-$\frac{π}{3}$) | B. | y=sin(x-$\frac{π}{6}$) | C. | y=sin(4x+$\frac{π}{3}$) | D. | y=sin(x-$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com