精英家教网 > 高中数学 > 题目详情
9.已知x,y满足约束条件$\left\{\begin{array}{l}{x-2y+4≥0}\\{x+y-2≤0}\\{y≥0}\\{\;}\end{array}\right.$,若目标函数z=ax-y仅在点(0,2)处取得最小值,则a的取值范围是(  )
A.(-$\frac{1}{2}$,1)B.(-∞,-1)∪($\frac{1}{2}$,+∞)C.(-1,$\frac{1}{2}$)D.(-∞,-$\frac{1}{2}$)∪(1,+∞)

分析 画出满足条件的平面区域,通过讨论a的符号结合图象求出a的范围即可.

解答 解:画出满足条件的平面区域,如图示:

由z=ax-y得:y=ax-z,
a>0时,显然0<a<$\frac{1}{2}$时满足仅在点(0,2)处取得最小值,
a<0时,显然-1<a<0时满足仅在点(0,2)处取得最小值,
a=0时也符号题意,
故a∈(-1,$\frac{1}{2}$),
故选:C.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别为角A,B,C的对边,cos2A=cosA.
(Ⅰ)求角A;
(Ⅱ)当a=2$\sqrt{3}$,S△ABC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$时,求边c的值和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若三棱柱ABC-A1B1C1的体积为V,P为CC1上的一点,${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{2V}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的前n项和为Sn,满足S4=4(a3+1),3a3=5a4
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过圆(x-1)2+(y+2)2=16上一点(1,2)的圆的切线方程是y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由曲线y=$\sqrt{x}$,直线y=x所围成的封闭曲线的面积是(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1且垂直于实轴的直线与双曲线的两条渐近线分别相交于A、B两点,若坐标原点O恰为△ABF2的垂心(三角形三条高的交点),则双曲线的离心率为(  )
A.$\frac{\sqrt{21}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.焦点在x轴的椭圆,顺次连接椭圆的短轴顶点和焦点形成一边长为$\sqrt{2}$的正方形,求:
(1)椭圆的标准方程;
(2)椭圆的焦点坐标、顶点坐标和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数y=(x+1)2的图象按向量$\overrightarrow{a}$经过一次平移后,得到y=x2的图象,则向量$\overrightarrow{a}$=(  )
A.(0,1)B.(0,-1)C.(-1,0)D.(1,0)

查看答案和解析>>

同步练习册答案