精英家教网 > 高中数学 > 题目详情
已知动点P到定点F(1,0)的距离比到直线x+2=0的距离小1.
(1)求动点P的轨迹E的方程;
(2)若曲线E上存在A、B两点关于直线l:2x+4y-9=0对称,且线段AB的延长线与直线x+1=0相交于点C,求:
(i)直线AB的方程;
(ii)△FAB与△FCB的面积之比.
考点:直线与圆锥曲线的综合问题,轨迹方程
专题:圆锥曲线中的最值与范围问题
分析:(1)由题意可得动点P到定点F(1,0)的距离与到直线x+1=0的距离相等.可得动点P的轨迹E是抛物线.
(2)(i)设A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0),把A,B的坐标代入抛物线方程可得:
y
2
1
=4x1
y
2
2
=4y2
,相减可得2y0•kAB=4,由直线l的斜率kl=-
1
2
,可得kAB=2,解得y0,代入直线l的方程可得M,利用点斜式可得直线AB的方程.
(ii)令x=-1,代入直线AB的方程解得C.联立
2x-y-4=0
y2=4x
,解得A,B,利用
S△FAB
S△FBC
=
|AB|
|BC|
即可得出.
解答: 解:(1)由题意可得动点P到定点F(1,0)的距离与到直线x+1=0的距离相等.
∴动点P的轨迹E是抛物线:点F为焦点,直线x=-1为准线,可得方程为:y2=4x.
(2)(i)设A(x1,y1),B(x2,y2),线段AB的中点M(x0,y0),
把A,B的坐标代入抛物线方程可得:
y
2
1
=4x1
y
2
2
=4y2

相减可得
(y1-y2)(y1+y2)
x1-x2
=4,
∴2y0•kAB=4,
kAB×(-
1
2
)=-1

∴kAB=2.∴2y0=2,解得y0=1,
代入方程2x+4y-9=0可得2x0+4-9=0,解得x0=
5
2

∴M(
5
2
,1)
,可得直线AB的方程为:y-1=2(x-
5
2
)
,化为2x-y-4=0.
(ii)令x=-1,代入直线AB的方程2x-y-4=0,解得y=-6,∴C(-1,-6).
联立
2x-y-4=0
y2=4x
,解得
x=1
y=-2
x=4
y=4

∴A(4,4),B(1,-2),|AB|=
32+62
=3
5
,|BC|=
22+42
=2
5

S△FAB
S△FBC
=
|AB|
|BC|
=
3
2
点评:本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题转化为方程联立得出交点、两点之间的距离公式、三角形面积之比、线段的垂直平分线的性质、中点坐标公式,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)

(Ⅰ)求f(x)的定义域;
(Ⅱ)若角α在第一象限且cosα=
3
5
,求f(α).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线y=ax2-
3
2
x-2(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,已知B点坐标为(4,0)
(1)求抛物线的解析式
(2)试判断△ABC的形状,并说明
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠BAC=120°,AC=3,AB=1,P为∠BAC平分线上异于A的一点,∠APB=α,三角形PAB的面积记为S.
(1)求BC的长;
(2)若α∈[
π
6
π
3
],求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

经调查发现,人们长期食用含高浓度甲基汞的鱼类会引起汞中毒,其中罗非鱼体内汞含量比其他鱼偏高.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.0ppm,现从一批数量很大的罗非鱼中随机地抽出15条作为样本,经检测得各条鱼的汞含量的茎叶图(以小数点前的数字为茎,小数点后第一位数字为叶)如图所示
(1)检查人员从这15条鱼中,随机抽出3条,求3条中恰有1条汞含量超标的概率;
(2)若从这批数量很大的鱼中任意选3条,记X表示抽到的汞含量超标的鱼的条数,以此15条鱼的样本数据来估计这批数量很大的鱼的总体数据,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

比较tan(-
13
4
π)与tan(-
12
5
π)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:对任意自然数n,总有
1
2
+
3
4
+
5
8
+…+
2n-1
2n
<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x+2|
+kx+b,其中k,b为实数且k≠0.
(I)当k>0时,根据定义证明f(x)在(-∞,-2)单调递增;
(Ⅱ)求集合Mk={b|函数f(x)有三个不同的零点}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,对?n∈N*有2Sn=an2+an
(1)求数列{an}的通项公式;
(2)令bn=
1
an
an+1
+an+1
an
,设{bn}的前n项和为Tn,求T1,T2,T3,…,T100中有理数的个数.

查看答案和解析>>

同步练习册答案