精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x-1
1+2x
(a∈R)

(I)若a=2,且f(x)=-
3
2
-2
2
,求x的值;
(II)若f(x)为奇函数,求a的值;
(III)当a=5时,函数f(x)的图象是否存在对称中心,若存在,求其对称中心;若不存在,请说明理由.
(I)若a=2,则f(x)=
2x-1
1+2x
=
2×(2x+1)-3
1+2x
=2-
3
1+2x
≥2-
3
1
=-1,
由于-
3
2
-2
2
<-1
,故方程由f(x)=
2x-1
1+2x
=-
3
2
-2
2
无实数解.
(II)由题意知,函数的定义域是R,
∵f(x)为奇函数,∴f(x)=-f(-x),
2x-1
1+2x
=-
2-x-1
1+2-x
,即
2x-1
1+2x
=-
a-2x
1+2x

解得a=1.
(III)当a=5时,f(x)=
2x-1
1+2x

假设函数f(x)的图象是否存在对称中心,设其坐标为(h,k),
则对任意x∈R,有f(h+x)+f(h-x)=2k恒成立,
2x+h-1
1+2x+h
+
2h-x-1
1+2h-x
=2k

整理得,
4-2k=0
(10-2k)×22h-2-2k=0

解得
h=0
k=2

当a=5时,函数f(x)的图象存在对称中心,其对称中心为(0,2).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案