精英家教网 > 高中数学 > 题目详情
已知函数f(x)和g(x)的定义域均为R,f(x)是偶函数,g(x)是奇函数,且g(x)的图象过点(-1,3),g(x)=f(x-1),则f(2012)+g(2013)=
-6
-6
分析:由g(x)=f(x-1),g(x)是奇函数,可以推导函数f(x)是周期为4的周期函数,由g(x)的图象过点(-1,3),得g(-1)=3,利用g(x)是奇函数,则g(1)=-3,结合函数的奇偶性和周期性,可以进行求值.
解答:解:∵g(x)=f(x-1),g(x)是奇函数,
∴g(-x)=-g(x),
即f(-x-1)=-f(x-1),
又f(x)是偶函数,
∴f(-x-1)=-f(x-1)=f(x+1),
即f(x+2)=-f(x),
∴f(x+4)=f(x),即函数f(x)的周期性为4,
∴f(2012)=f(0),
∵g(x)=f(x-1),
∴g(2013)=f(2013-1)=f(2012)=f(0),
∴f(2012)+g(2013)=2f(0),
∵g(x)的图象过点(-1,3),得g(-1)=3,
又g(-1)=-g(1)=3,
∴g(1)=-3,
又g(1)=f(0),
∴f(0)=g(1)=-3,
∴f(2012)+g(2013)=2f(0)=-6.
故答案为:-6.
点评:本题主要考查函数奇偶性和周期性的应用,利用条件推导函数f(x)是周期函数是解决本题的关键,综合考查了学生的运算推导能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义域都是实数集R,f(x)是奇函数,g(x)是偶函数.且当x<0时,f′(x)g(x)+f(x)g′(x)>0,g(-2)=0,则不等式f(x)g(x)<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于y轴对称,且f(x)=x2+
1
2
x
.则不等式g(x)≥f(x)-|x-4|的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(1)求函数g(x)的解析式;
(2)λ≠-1,若h(x)=g(x)-λf(x)+1在x∈[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且g(x)=-x2+2x.
(1)求函数f(x)的解析式;
(2)解不等式f(x)≤g(x)+|x-1|;
(3)若函数h(x)=f(x)+λ•g(x)+1在区间[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案