精英家教网 > 高中数学 > 题目详情
若关于x的不等式x
1
2
>ax
的解集是{x|0<x<4},则实数a的值是______.
原不等式可化为
x
>ax,对应的方程为
x
=ax,
根据不等式的解集与方程的根的关系,可得
x
=ax的根为0或4,
将x=4代入方程可得,
4
=4a,
则a=
1
2

故答案为
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【解析图片】设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x2-3x+3恒成立.
(1)求f(x)的表达式;
(2)若关于x的不等式f(x)≤nx-1的解集非空,求实数n的取值的集合A.
(3)若关于x的方程f(x)=nx-1的两根为x1,x2,试问:是否存在实数m,使得不等式m2+tm+1≤|x1-x2|对任意n∈A及t∈[-3,3]恒成立?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄州区模拟)(理)(1)证明不等式:ln(1+x)<
x
1+x
(x>0).
(2)已知函数f(x)=ln(1+x)-
ax
a+x
在(0,+∞)上单调递增,求实数a的取值范围.
(3)若关于x的不等式
x
1+bx
+
1
ex
≥1在[0,+∞)上恒成立,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)已知函数f(x)=
lnx
x

(I)若关于x的不等式f(x)≤m恒成立,求实数m的最小值:
(II)对任意的x1,x2∈(0,2)且x1<x2,己知存在.x0∈(x1,x2)使得f′(x0)=
f(x2)-f(x 1)
x2-x1

求证:x0
x1x2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)已知函数f(x)=ln(1+x),g(x)=a(x2-x)(a≠0,a∈R),h(x)=f(x)-g(x).
(I)若关于X的不等式g(x)≤bx-2的解集为{x|-2≤x≤-1},求实数a,b的值;
(II)若?x>3,f(x)≤g(x成立,求实数a的取值范围;
(III)在函数f(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2),使线段AB的中点的横坐标x0与直线AB的斜率k之间满足k=h′(x0)?若存在,求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:黄州区模拟 题型:解答题

(理)(1)证明不等式:ln(1+x)<
x
1+x
(x>0).
(2)已知函数f(x)=ln(1+x)-
ax
a+x
在(0,+∞)上单调递增,求实数a的取值范围.
(3)若关于x的不等式
x
1+bx
+
1
ex
≥1在[0,+∞)上恒成立,求实数b的最大值.

查看答案和解析>>

同步练习册答案