精英家教网 > 高中数学 > 题目详情
19.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根,若“p或q”真“p且q”为假,求m的取值范围.

分析 若“p或q”真“p且q”为假,命题p,q应一真一假,分类讨论,可得m的取值范围.

解答 解:若方程 x2+mx+1=0有两个不等的负根,
则$\left\{\begin{array}{l}△={m}^{2}-4>0\\ m>0\end{array}\right.$ 
 解得m>2,
若方程4x2+4(m-2)x+1=0无实根,则△=16(m-2)2-16<0,
解得:1<m<3
∵“p或q”真“p且q”,
因此,命题p,q应一真一假,
∴$\left\{\begin{array}{l}m>2\\ m≤1,或m≥3\end{array}\right.$或$\left\{\begin{array}{l}m≤2\\ 1<m<3\end{array}\right.$,
解得:m∈(1,2]∪[3,+∞).

点评 本题以命题的真假判断与应用为载体,考查了复合命题,二次方程根与系数的关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,且a2=3,S5=25.
(1)求数列{an}的通项公式an
(2)设数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n项和为Tn,是否存在k∈N*,使得等式2-2Tk=$\frac{1}{3^k}$成立,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}满足an=n2+λn(λ∈R),且a1<a2<a3<…<an<an+1<…,则λ的取值范围是(-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面上$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=1,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,|$\overrightarrow{OP}$|<$\frac{1}{3}$,则|$\overrightarrow{OA}$|的取值范围(  )
A.$(0,\frac{{\sqrt{10}}}{3}]$B.$(\frac{{\sqrt{10}}}{3},\frac{{\sqrt{17}}}{3}]$C.$(\frac{{\sqrt{10}}}{3},\sqrt{2}]$D.$(\frac{{\sqrt{17}}}{3},\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“?x∈R,ax2-2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ex+4x-3的零点为x0,则x0所在的区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.近日,某公司对其生产的一款产品进行促销活动,经测算该产品的销售量P(单位:万件)与促销费用x(单位:万元)满足函数关系:p=3-$\frac{2}{x+1}$(其中0≤x≤a,a为正常数).已知生产该产品件数为P(单位:万件)时,还需投入成本10+2P(单位:万元)(不含促销费用),产品的销售价格定为(4+$\frac{30}{p}$)元/件,假定生产量与销售量相等.
(Ⅰ)将该产品的利润y(单位:万元)表示为促销费用x(单位:万元)的函数;
(Ⅱ)促销费用x(单位:万元)是多少时,该产品的利润y(单位:万元)取最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果函数f(x)在区域D上满足:?a,b,c∈D,f(a),f(b),f(c)为一个三角形的三边长,则称f(x)为“区域D上的三角形函数”.已知函数f(x)=kx+2是“[1,4]上的三角形函数”,则实数k的取值范围是(-$\frac{2}{7}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=4x2-mx+5,在[-2,+∞)上递增,在(-∞,-2]上递减,则f(1)=(  )
A.-7B.1C.17D.25

查看答案和解析>>

同步练习册答案