精英家教网 > 高中数学 > 题目详情
16.若$a+\frac{1}{i}=1-bi$(a、b是实数,i是虚数单位),则复数z=a+bi的共轭复数等于(  )
A.-1-iB.-1+iC.1-iD.1+i

分析 利用复数代数形式的乘除运算化简等式左边,再由复数相等的条件求得a,b,则答案可求.

解答 解:由若$a+\frac{1}{i}=1-bi$,得
$a+\frac{-i}{-{i}^{2}}=a-i=1-bi$,
∴a=b=1.
则复数z=a+bi的共轭复数等于a-bi=1-i.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(α)=$\frac{sin(π-α)cos(2π-α)sin(-α+\frac{3}{2}π)}{cos(-π-α)cos(-α+\frac{3}{2}π)}$.
(1)化简f(α);(2)若α是第三象限角,且cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)($\frac{2}{3}$)-2+(1-$\sqrt{2}$)0-($\frac{27}{8}$)${\;}^{\frac{2}{3}}$
(2)log34-log332+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$tanα=-\frac{1}{2}$,则$\frac{{{{sin}^2}α}}{{{{sin}^2}α-sinαcosα-2{{cos}^2}α}}$的值为-$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,D是边AC的中点,且$AB=1,cosA=\frac{1}{3},BD=\frac{{2\sqrt{3}}}{3}$.
(1)求AC的值;
(2)求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数y=f(x),x∈R,给出下列4个命题:
①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;
②若f(x)为偶函数,且f(x+2)=-f(x),则f(x)的图象关于直线x=2对称;
③若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称;
④函数y=f(x-2)与y=f(2-x)的图象关于直线x=2对称.
其中正确命题的代号依次为①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=sin(ωx+φ)(ω∈R,0<φ<π),满足f(x)=-f(x+$\frac{π}{2}$),f(0)=$\frac{1}{2}$,f′(0)<0,则g(x)=2cos(ωx+φ)在区间[0,$\frac{π}{4}$]上的最大值与最小值之和为(  )
A.-3B.3C.$\sqrt{3}$-1D.1-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:${3}^{1+lo{g}_{3}5}$-${2}^{4+lo{g}_{2}3}$+103lg3+${(\frac{1}{2})}^{lo{g}_{2}5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项和为Sn,若3a4-a3=18,则S8=(  )
A.18B.36C.54D.72

查看答案和解析>>

同步练习册答案