精英家教网 > 高中数学 > 题目详情
6.已知等差数列{an}的前n项和为Sn,若3a4-a3=18,则S8=(  )
A.18B.36C.54D.72

分析 由题意和等差数列的性质可得a4+a5=18,再由等差数列的求和公式和性质可得S8=4(a4+a5),代值计算可得.

解答 解:∵3a4-a3=a4+2a4-a3=a4+a5+a3-a3=18,∴a4+a5=18,
∴S8=$\frac{8({a}_{1}+{a}_{8})}{2}$=4(a1+a8)=4(a4+a5)=72,
故选:D.

点评 本题考查等差数列的求和公式和性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若$a+\frac{1}{i}=1-bi$(a、b是实数,i是虚数单位),则复数z=a+bi的共轭复数等于(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式ax2+5x-2>0的解集是M.
(1)若M=∅,求实数a的取值范围;
(2)若M{x|$\frac{1}{2}$<x<2},求不等式ax2-5x+a2-1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知loga18=m,loga24=n,用含m,n的式子把loga1.5表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明:a${\;}^{lo{g}_{a}N}$=N.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{1(x≥0)}\\{-1(x<0)}\end{array}\right.$,则不等式(x+1)f(x)>2的解集是{x|x<-3,或x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某容器中盛满10kg的纯酒精,倒出2kg后再补上同质量的水,混合后再倒出2kg,再补上同质量的水,倒出n次后容器中纯酒精的质量为(  )
A.8×$(\frac{4}{5})^{n-1}$kgB.8×$(\frac{4}{5})^{n}$kgC.8×$(\frac{4}{5})^{n+1}$kgD.8×$(\frac{1}{5})^{n-1}$kg

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若1og2(1og3x)=log3(log4y)=log4(log2z)=0,求x+y+z的值为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=|ex-$\frac{m}{{e}^{x}}$|(e为自然对数的底)在区间[0,1]上单调递增,则m的取值范围是(  )
A.[0,1]B.[-0,e]C.[-1,1]D.(-e,e]

查看答案和解析>>

同步练习册答案