精英家教网 > 高中数学 > 题目详情
10.在△ABC中,已知下列条件,解出三角形(角度精确到1′,边长精确到0.01cm)
(1)a=12cm,b=5cm,A=120°;
(2)a=6cm,b=8cm,A=30°;
(3)a=7cm,b=23cm,C=130°;
(4)b=14cm,c=10cm,A=145°;
(5)a=32cm,c=23cm,B=152°;
(6)a=2cm,b=3cm,c=4cm.

分析 1,2首先利用正弦定理求出sinB,然后根据边的关系确定角的大小,利用内角和定理求出C,继续利用正弦定理求出;
3,4,5,6利用余弦定理解答.

解答 解:(1)由正弦定理得到$\frac{a}{sinA}=\frac{b}{sinB}$即$\frac{12}{sin120°}=\frac{5}{sinB}$解得sinB=$\frac{5\sqrt{3}}{24}$≈0.36,又a>b,所以B=21.1°,C=38.9°;由$\frac{a}{sinA}=\frac{c}{sinC}$得到c=$\frac{asinC}{sinA}$=$\frac{12×0.628}{0.866}$≈8.70cm;
(2)由正弦定理得到$\frac{a}{sinA}=\frac{b}{sinB}$,所以sinB=$\frac{bsinA}{a}$=$\frac{8×\frac{1}{2}}{6}=\frac{2}{3}$,因为a<b,所以A<B,B=41.8°或者138.2°,所以C=108.2°或者11.8°,
由$\frac{a}{sinA}=\frac{c}{sinC}$得到c=$\frac{asinC}{sinA}$=$\frac{6sin108.2°}{\frac{1}{2}}$≈11.4cm,或者c=$\frac{6sin11.8°}{\frac{1}{2}}$≈2.45cm;
(3)由余弦定理得到c2=a2+b2-2abcos130°=72+232-2×7×23×cos130°=49+529+14×23×0.6428=578+207=785,所以c≈28.0cm;
由正弦定理得到sinA=$\frac{asinC}{c}$=$\frac{7×0.766}{28}$≈0.19cm,所以A≈11°,所以B≈39°;
(4)由余弦定理得到a2=b2+c2-2bccosA=142+102-2×14×10×cos145°=296+280×cos35°≈483.9cm,所以a≈22.0cm,
由正弦定理得到sinC=$\frac{csinA}{a}$=$\frac{10×0.574}{22}$=0.261,所以C≈15.1°,所以B≈19.9°;
(5)由余弦定理得到b2=a2+c2-2accosB=322+232-2×32×23×cos152°≈2852.7,所以b≈53.4cm,由正弦定理得到sinA=$\frac{asinB}{b}$=$\frac{32×0.4694}{53.4}$≈0.2813,所以A≈16.4°,所以C≈11.6°;
(6)由余弦定理得到cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4+9-16}{2×2×3}$=$-\frac{1}{4}$,所以A≈105.5°,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{4+16-9}{2×2×4}$=$\frac{11}{16}$≈0.6875,所以B=46.6°,所以C≈27.9°.

点评 本题考查了利用正弦定理和余弦定理解三角形,考查了计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则$\frac{sinB}{sin3B}$等于(  )
A.$\frac{a}{c}$B.$\frac{c}{b}$C.$\frac{b}{a}$D.$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}与{bn}满足下列关系:a1=2a,an+1=$\frac{1}{2}$(an+$\frac{{a}^{2}}{{a}_{n}}$),bn=$\frac{{a}_{n}+a}{{a}_{n}-a}$(n∈N*),其中a>0.
(1)求数列{bn}的通项公式,并证明:$\frac{{a}_{n}-a}{{a}_{n+1}-a}$=${3}^{{2}^{n-1}}$+1;
(2)设Sn是数列{an}的前n项和,当n≥2时,与(n+$\frac{4}{3}$)a是否有确定的大小关系?若有,请加以证明;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知3sinα=2sinβ,3cosα+2cosβ=3,α,β∈(0,$\frac{π}{2}$),则α+2β=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*
(1)证明:{an-1}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,圆柱轴截面ABCD是正方形,E是底面圆周上不同于A、B的一点,AF⊥DE于F.
(1)求证:AF⊥BD
(2)若圆柱的体积是三棱锥D-ABE的体积的3π倍,求直线DE与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.现有翻译9人,其中4人只会英语,3人只会日语,2人既会英语又会日语,现从中选6人,安排3人翻译英语,3人翻译日语,则不同的安排方法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知-3<α<β<2,则α-|β|的取值范围是(-6,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数f(x)=$\sqrt{{x}^{2}-5x+6}$+$\frac{(x-1)^{0}}{\sqrt{x+|x|}}$的定义域.

查看答案和解析>>

同步练习册答案