精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱中,,异面直线所成
的角为.

(Ⅰ)求证:
(Ⅱ)设的中点,求与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ).

试题分析:(Ⅰ)由直三棱柱的性质证,再证明平面;(Ⅱ)用向量法求解.
试题解析:(Ⅰ)三棱柱是直三棱柱,
平面,.
,平面
平面
平面.                    (5分)
(Ⅱ)如图,

点为原点,分别为轴正方向,线段长为单位长,
建立空间直角坐标系,设,则

由于直线所成的角为.
,解得
,,设平面的法向量,
,可取.,.     (10分)
于是,
所以与平面所成角的正弦值为.                 (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC—A1B1C1中,.

(1)求直线与平面所成角的正弦值;
(2)在线段上是否存在点?使得二面角的大小为60°,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,的中点.

(1)求证:
(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△ 分别沿折起,使两点重合于点,连接.

(1)求证:;     (2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体ABCD A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:
①AA1⊥MN
②异面直线AB1,BC1所成的角为60°
③四面体B1 D1CA的体积为
④A1C⊥AB1,A1C⊥BC1, 其中正确的结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线和平面,若,则“”是“”的(   )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设l、m是两条不同的直线,a,β是两个不同的平面,有下列命题:
①l//m,ma,则l//a ;② l//a,m//a 则 l//m; ③a丄β,la,则l丄β; ④l丄a,m丄a,则l//m.
其中正确的命题的个数是(      )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线a,b,c及平面a,b,γ,有下列四个命题:
①.若;②。若
③.若,则;       ④。若,则
其中正确的命题序号是                ;

查看答案和解析>>

同步练习册答案