精英家教网 > 高中数学 > 题目详情
14.如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,G为EC的中点,AF=AB=BC=FE=$\frac{1}{2}$AD.
(Ⅰ)求证:BF∥平面CDE;
(Ⅱ)求证:平面AGD⊥平面CDE;
(Ⅲ)求直线CE与平面ADEF所成角的大小.

分析 (I)由BC∥FE,BC=FE可得四边形BCEF是平行四边形,故而BF∥CE,于是BF∥平面CDE;
(II)过点E作EP⊥AD于P,连接CP、AC、AE,通过计算可得AC=AE=CD=DE,由等腰三角形的性质得出AG⊥CE,DG⊥CE,于是CE⊥平面ADG,故而平面AGD⊥平面CDE;
(III)证明AB⊥平面ADEF,又BF∥CE,于是直线CE与平面ADEF所成角等于BF与平面ADEF所成的角,故∠BFA即为所求的角.

解答 (Ⅰ)证明:∵BC∥FE,BC=FE,
∴四边形BCEF是平行四边形.
∴BF∥CE.
∵BF?平面CDE,CE?平面CDE,
∴BF∥平面CDE.
(Ⅱ)证明:过点E作EP⊥AD于P,连接CP、AC、AE,
设AF=a,则EP=PD=PC=a,AC=AE=$CD=DE=\sqrt{2}a$.
∴△CDE,△ACE为等腰三角形.
∵G为EC的中点,
∴DG⊥CE,AG⊥CE.
又AG?平面ADG,DG?平面ADG,AG∩DG=G,
∴CE⊥平面ADG.
∵CE?平面CDE,
∴平面AGD⊥平面CDE.
(Ⅲ)∵BA⊥AF,BA⊥AD,AF∩AD=A,
∴BA⊥平面ADEF.
∴∠BFA即为直线BF与平面ADEF所成角.
∵$tan∠BFA=\frac{AB}{AF}=1$,
∴∠BFA=45°.
∵BF∥CE,
∴直线CE与平面ADEF所成的角为45°.

点评 本题考查了线面平行,面面垂直的判定,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在直三棱柱A1B1C1-ABC中,AB=AC=4$\sqrt{2}$,AA1=6,BC=8,则其外接球半径为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在三棱锥P-ABC中,PA=2$\sqrt{3}$,PC=2,AB=$\sqrt{7}$,BC=3,∠ABC=$\frac{π}{2}$,则三棱锥P-ABC外接球的表面积为(  )
A.B.$\frac{16}{3}$πC.$\frac{32}{3}$πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B-PADE的体积是$\frac{\sqrt{3}}{3}$;
(1)画出面PBE与面ABC的交线,说明理由;
(2)求BE与面PADE所成的线面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知四面体P-ABC的四个顶点都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AB=1,PB=AC=2,则球O的表面积S=9π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=f(x),若在区间I内有且只有一个实数c(c∈I),使得f(c)=0成立,则称函数y=f(x)在区间I内具有唯一零点.
(1)判断函数f(x)=$\left\{\begin{array}{l}{x^2}-1,0≤x<1\\{log_2}x,x≥1\end{array}$在区间(0,+∞)内是否具有唯一零点,并说明理由;
(2)已知向量$\overrightarrow{m}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),$\overrightarrow{n\;}$=(sin2x,cos2x),x∈(0,π),证明f(x)=$\overrightarrow{m\;}•\overrightarrow{n\;}$+1在区间(0,π)内具有唯一零点;
(3)若函数f(x)=x2+2mx+2m在区间(-2,2)内具有唯一零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图,(其中侧视图中圆弧是半圆),则该几何体的表面积为(  )
A.92+14πB.100+10πC.90+12πD.92+10π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S的取值范围为?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.球面上过A,B,C三点的截面和球心的距离等于半径的一半,且AB⊥BC,AB=1,BC=$\sqrt{2}$,则球的表面积为(  )
A.$\frac{16π}{9}$B.$\frac{8π}{3}$C.D.$\frac{64π}{9}$

查看答案和解析>>

同步练习册答案