精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线(为常数,)经过点,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为( )

A.0B.1C.2D.3

【答案】C

【解析】

由抛物线过点,对称轴在轴右侧,即可得出当,结论①错误;

过点轴的平行线,由该直线与抛物线有两个交点,可得出方程有两个不相等的实数根,结论②正确;

由当,可得出,由抛物线与轴交于点,可得出,进而即可得出,由抛物线过点可得出,结合可得出,综上可得出,结论③正确,此题得解.

抛物线过点,对称轴在轴右侧,

,结论①错误;

过点轴的平行线,如图所示.

该直线与抛物线有两个交点,

方程有两个不相等的实数根,结论②正确;

.

抛物线为常数且经过点

.

时,,即

.

抛物线开口向下,

,结论③正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某面包店随机收集了面包种类的有关数据,经分类整理得到下表:

面包类型

第一类

第二类

第三类

第四类

第五类

第六类

面包个数

90

60

30

80

100

40

好评率

0.6

0.45

0.7

0.35

0.6

0.5

好评率是指:一类面包中获得好评的个数与该类面包的个数的比值.

1)从面包店收集的面包中随机选取1个,求这个面包是获得好评的第五类面包的概率;

2)从面包店收集的面包中随机选取1个,估计这个面包没有获得好评的概率;

3)面包店为增加利润,拟改变生产策略,这将导致不同类型面包的好评率发生变化.假设表格中只有两类面包的好评率数据发生变化,那么哪类面包的好评率增加0.1,哪类面包的好评率减少0.1,使得获得好评的面包总数与样本中的面包总数的比值达到最大?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点是四边形的中心,关于直线,下列说法正确的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知),且.

(1)证明为等比数列,并求数列的通项公式;

(2),且证明

(3)在(2)小问的条件下,若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中AB两个小组所得分数如下表:

A

86

77

80

94

88

B

91

83

75

93

其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1.

1)若从B组学生中随机挑选1人,求其得分超过85分的概率;

2)从A组这5名学生中随机抽取2名同学,设其分数分别为mn,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点,点是圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线.且直线交曲线两点(点轴的上方).

1)求曲线的方程;

2)试判断直线与曲线的另一交点是否与点关于轴对称?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),在同一个周期内,当时,取得最大值,当时,取得最小值.

(1)求函数的解析式,并求[0]上的单调递增区间.

(2)将函数的图象向左平移个单位长度,再向下平移个单位长度,得到函数的图象,方程2个不同的实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最小值及取到最小值时自变量x的集合;

(2)指出函数y的图象可以由函数ysinx的图象经过哪些变换得到;

(3)x[0m]时,函数yf(x)的值域为,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

同步练习册答案