精英家教网 > 高中数学 > 题目详情
已知点A,B的坐标分别为(-5,0),(5,0),直线AM,BM相交于点M,且它们的斜率之积是-
4
9
,则点M的轨迹方程为
x2
25
+
9y2
100
=1,(x≠±5)
x2
25
+
9y2
100
=1,(x≠±5)
分析:设出点M的坐标,表示出直线AM、BM的斜率,进而求出它们的斜率之积,利用斜率之积是-
4
9
,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程.
解答:解:设M(x,y),因为A(-5,0),B(5,0)
所以kAM=
y
x+5
(x≠-5),kBM=
y
x-5
(x≠5)
由已知,
y
x+5
y
x-5
=-
4
9
化简,得4x2+9y2=100(x≠±5)
x2
25
+
9y2
100
=1,(x≠±5)

故答案为:
x2
25
+
9y2
100
=1,(x≠±5)
点评:本题重点考查轨迹方程的求解,解题的关键是正确表示出直线AM、BM的斜率,利用条件建立方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积-
12

(1)求点M轨迹C的方程;
(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点D、F(E在D、F之间),试求△ODE与△ODF面积之比的取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【理科生做】已知点A、B的坐标分别是(0,-1),(0,1),直线AM、BM相交于点M,且它们的斜率之积为-1.
(1)求点M轨迹C的方程;
(2)若过点(2,0)且斜率为k的直线l与(1)中的轨迹C交于不同的两点E、F(E在D、F之间),记△ODE与△ODF面积之比为λ,求关于λ和k的关系式,并求出λ取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(-1,0),(1,0),直线AM与BM相交于点M,且直线AM的斜率与BM斜率之差是2,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积为-
1
2

(1)求点M的轨迹C的方程;
(2)过D(2,0)的直线l与轨迹C有两个不同的交点时,求l的斜率的取值范围;
(3)若过D(2,0),且斜率为
14
6
的直线l与(1)中的轨迹C交于不同的E、F(E在D、F之间),求△ODE与△ODF的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A、B的坐标分别是A(0,-1),B(0,1),直线AM、BM相交于点M,且它们的斜率之积是2,求点M的轨迹方程,并说明曲线的类型.

查看答案和解析>>

同步练习册答案