精英家教网 > 高中数学 > 题目详情
5.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$(2,\sqrt{3})$,且它的离心率e=$\frac{1}{2}$.直线l:y=kx+t与椭圆C1交于M、N两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l与圆C2:(x-1)2+y2=1相切,椭圆上一点P满足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OP}$,求实数λ的取值范围.

分析 (Ⅰ)利用椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$(2,\sqrt{3})$,且它的离心率e=$\frac{1}{2}$,求出a,b,即可求椭圆的标准方程;
(Ⅱ)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以2k=$\frac{1-{t}^{2}}{t}$,把y=kx+t代入$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1$,得:(3+4k2)x2+8ktx+4t2-24=0,由此能求出实数λ的取值范围.

解答 解:(Ⅰ) 由已知得:$\frac{4}{{a}^{2}}+\frac{3}{{b}^{2}}$=1,$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{1}{4}$,解得a=2$\sqrt{2}$,b=$\sqrt{6}$,
所以椭圆的标准方程为:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1$.
因为直线l:y=kx+t与圆(x-1)2+y2=1相切,
所以$\frac{|t+k|}{\sqrt{1+{k}^{2}}}$=1,2k=$\frac{1-{t}^{2}}{t}$,t≠0,
把y=kx+t代入$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}=1$,并整理得:(3+4k2)x2+8ktx+4t2-24=0,
设M(x1,y1),N(x2,y2),则有x1+x2=-$\frac{8kt}{3+4{k}^{2}}$,
y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=$\frac{6t}{3+4{k}^{2}}$
因为λ$\overrightarrow{OP}$=(x1+x2,y1+y2),
所以P($\frac{-8kt}{(3+4{k}^{2})λ}$,$\frac{6t}{(3+4{k}^{2})λ}$),
又因为点C在椭圆上,所以代入整理可得λ2=$\frac{2{t}^{2}}{3+4{k}^{2}}$=$\frac{2}{(\frac{1}{{t}^{2}})^{2}+\frac{1}{{t}^{2}}+1}$
因为t2>0,所以$(\frac{1}{{t}^{2}})^{2}+\frac{1}{{t}^{2}}+1>1$,
所以0<λ2<2,所以λ的取值范围为(-$\sqrt{2}$,0)∪(0,$\sqrt{2}$).

点评 本题考查直线与圆锥曲线的位置关系、椭圆方程的求解,考查平面向量的运算、直线与圆相切及韦达定理,考查学生综合运用知识分析解决问题的能力,对能力要求高.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知直线方程为(2+m)x+(1-2m)y+4-3m=0.
(1)证明:直线恒过定点;
(2)m为何值时,点Q(3,4)到直线的距离最大,最大值为多少?
(3)若直线分别与x轴、y轴的负半轴交于A、B两点,求△AOB面积的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}3{e}^{x-1},x<3\\ lo{g}_{3}({x}^{2}-6),x≥3\end{array}\right.$,则f(f($\sqrt{15}$))的值为3e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b,c分别是△ABC中角A,B,C的对边,若$a=\sqrt{2}$,b=2,cos2(A+B)=0,则c=(  )
A.$\sqrt{2}$B.$\sqrt{10}$C.$\sqrt{2}$或$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=0,其前n项和Sn满足${S_n}=n{a_n}+\frac{1}{2}n({n-1})$.
(1)求数列{an}的通项公式;
(2)设${b_n}=\left\{\begin{array}{l}n•{2^{a_n}},n=2k-1\\ \frac{1}{{{n^2}+2n}},n=2k\end{array}\right.({k∈{{N}^*}})$,求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将一个气球的半径扩大1倍,它的体积扩大到原来的(  )倍.
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,酒杯的杯体轴截面是抛物线x2=2py (p>0)的一部分,若将半径为r(r>0)的玻璃球放入杯中,可以触及酒杯底部(即抛物线的顶点),则r的最大值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.以下命题中:
①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③已知随机变量ξ+η=8,若ξ~B(10,0.6),则Eη,Dη分别是2和2.4;
④设随机变量ξ服从正态分布N(3,7),若P(ξ>a+2)=P(ξ<a-2),则a=2;
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把函数y=sin(x+$\frac{π}{6}$)图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴为(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{π}{6}$D.x=π

查看答案和解析>>

同步练习册答案