精英家教网 > 高中数学 > 题目详情
9.若向量$\overrightarrow{AB}$=(2,3)向右平移1个单位,再向下平移2个单位得到向量$\overrightarrow{A′B′}$,则$\overrightarrow{A′B′}$为(  )
A.(3,1)B.(1,1)C.(3,5)D.(2,3)

分析 根据平面向量平移时,向量的模不变,方向也不变,故向量的坐标不变.

解答 解:向量$\overrightarrow{AB}$=(2,3)向右平移1个单位,
再向下平移2个单位,向量的模不变,方向也不变,
∴向量的坐不变,即向量$\overrightarrow{A′B′}$=(2,3).
故选:D.

点评 本题考查了平面向量自由平移问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数$y=2sin({\frac{π}{2}x-\frac{π}{3}})({0≤x≤3})$的最大值与最小值之和为(  )
A.$2-\sqrt{3}$B.0C.-1D.$-1-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直角三角形ABC,三内角成等差数列,最短边的边长为m(m>0),P是△ABC内一点,并且∠APB=∠APC=∠BPC=120°,则PA+PB+PC=$\sqrt{21}$时,m的值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过点P(3,3)向圆O:x2+y2=4作两条切线PA,PB,求:
(1)线段PA的长.
(2)弦AB所在的直线方程.
(3)问是否存在过点P的直线L交圆O于M,N两点,使得点M是线段PN的中点,若存在,求出直线L的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,已知A={(x,y)|x+y≤1,x≥0,y≥0},求B={(x+y,x-y)|(x,y)∈A}所表示的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:${C}_{8}^{1}$+${C}_{8}^{2}$+${C}_{8}^{3}$+${C}_{8}^{4}$+${C}_{8}^{5}$+${C}_{8}^{6}$+${C}_{8}^{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2为双曲线C:x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点,点M是双曲线C左支上的一点,直线MF2垂直双曲线的一条渐近线于点N,且N为线段MF2的中点,则b=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和Sn=$\frac{4}{3}$an-$\frac{1}{3}$×2n+1+$\frac{2}{3}$,n=1,2,3,…
(1)求证:{an+2n}是等比数列;
(2)设Tn=$\frac{{2}^{n}}{{S}_{n}}$,n=1,2,3…证明:$\sum_{i=1}^{n}$Ti<$\frac{3}{2}$(其中$\sum_{i=1}^{n}$Ti=T1+T2+…+Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角θ终边过(1,2),则sin2θ-tan2θ=(  )
A.$\frac{1}{2}$B.0C.$\frac{32}{15}$D.1

查看答案和解析>>

同步练习册答案