精英家教网 > 高中数学 > 题目详情
17.若直线$\frac{x}{a}+\frac{y}{b}$=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.

分析 将(1,2)代入直线方程,求得$\frac{1}{a}$+$\frac{2}{b}$=1,利用“1”代换,根据基本不等式的性质,即可求得2a+b的最小值.

解答 解:直线$\frac{x}{a}+\frac{y}{b}$=1(a>0,b>0)过点(1,2),则$\frac{1}{a}$+$\frac{2}{b}$=1,
由2a+b=(2a+b)×($\frac{1}{a}$+$\frac{2}{b}$)=2+$\frac{4a}{b}$+$\frac{b}{a}$+2=4+$\frac{4a}{b}$+$\frac{b}{a}$≥4+2$\sqrt{\frac{4a}{b}×\frac{b}{a}}$=4+4=8,
当且仅当$\frac{4a}{b}$=$\frac{b}{a}$,即a=$\frac{1}{2}$,b=1时,取等号,
∴2a+b的最小值为8,
故答案为:8.

点评 本题考查基本不等式的应用,考查“1”代换,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-EFCB中,四边形EFCB是梯形,EF∥BC且EF=$\frac{3}{4}$BC,△ABC是边长为2的正三角形,顶点F在AC上射影为点G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)证明:平面FGB⊥平面ABC;
(2)求三棱锥E-GBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,平行四边形PABC中,∠PAC=∠ABC=90°,PA=AB=2$\sqrt{3}$,AC=4,现把△PAC沿AC折起,使PA与平面ABC成60°角,设此时P在平面ABC上的投影为O点(O与B在AC的同侧).

(Ⅰ)求证:OB∥平面PAC;
(Ⅱ)试问:线段PA上是否在存在一点M,使得二面角M-BC-A的余弦值为$\frac{5\sqrt{37}}{37}$?若存在,指出M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,x2-x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,
(Ⅰ)证明:A1O∥平面B1CD1
(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a>1,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的离心率的取值范围是(  )
A.($\sqrt{2}$,+∞)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若M={1,2,3,6},N={2,3,4,7,9},则M∩N=(  )
A.{2,3}B.{1,4}C.{1,2,3,4,6,7,9}D.{2}

查看答案和解析>>

同步练习册答案