分析 (Ⅰ)取B1D1中点G,连结A1G、CG,推导出A1G$\underset{∥}{=}$OC,从而四边形OCGA1是平行四边形,进而A1O∥CG,由此能证明A1O∥平面B1CD1.
(Ⅱ)推导出BD⊥A1E,AO⊥BD,EM⊥BD,从而BD⊥平面A1EM,再由BD∥B1D1,得B1D1⊥平面A1EM,由此能证明平面A1EM⊥平面B1CD1.
解答
证明:(Ⅰ)取B1D1中点G,连结A1G、CG,
∵四边形ABCD为正方形,O为AC与BD 的交点,
∴四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后,A1G$\underset{∥}{=}$OC,
∴四边形OCGA1是平行四边形,∴A1O∥CG,
∵A1O?平面B1CD1,CG?平面B1CD1,
∴A1O∥平面B1CD1.
(Ⅱ)四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后,BD$\underset{∥}{=}$B1D1,
∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,
又BD?平面ABCD,∴BD⊥A1E,
∵四边形ABCD为正方形,O为AC与BD 的交点,
∴AO⊥BD,
∵M是OD的中点,E为AD的中点,∴EM⊥BD,
∵A1E∩EM=E,∴BD⊥平面A1EM,
∵BD∥B1D1,∴B1D1⊥平面A1EM,
∵B1D1?平面B1CD1,
∴平面A1EM⊥平面B1CD1.
点评 本题考查线面平行的证明,考查面面垂直的证明,涉及到空间中线线、线面、面面间的位置关系等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1,x2,…,xn的平均数 | B. | x1,x2,…,xn的标准差 | ||
| C. | x1,x2,…,xn的最大值 | D. | x1,x2,…,xn的中位数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-\frac{1}{2},\frac{{\sqrt{3}}}{2})$ | B. | $(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$ | C. | $(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$ | D. | $(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com