精英家教网 > 高中数学 > 题目详情
11.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=$\frac{π}{3}$.

分析 根据正弦定理和两角和的正弦公式和诱导公式计算即可

解答 解:∵2bcosB=acosC+ccosA,由正弦定理可得,
2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,
∵sinB≠0,
∴cosB=$\frac{1}{2}$,
∵0<B<π,
∴B=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$

点评 本题考查了正弦定理和两角和的正弦公式和诱导公式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知a,b∈R,则“|a|+|b|>1”是“b<-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,
(Ⅰ)证明:A1O∥平面B1CD1
(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则m=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a>1,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的离心率的取值范围是(  )
A.($\sqrt{2}$,+∞)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若x,y满足$\left\{\begin{array}{l}{x≤3}\\{x+y≥2}\\{y≤x}\end{array}\right.$,则x+2y的最大值为(  )
A.1B.3C.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,∠A=60°,c=$\frac{3}{7}$a.
(1)求sinC的值;
(2)若a=7,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是(  )
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+3C.$\frac{3π}{2}$+1D.$\frac{3π}{2}$+3

查看答案和解析>>

同步练习册答案