精英家教网 > 高中数学 > 题目详情
1.已知a,b∈R,则“|a|+|b|>1”是“b<-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.

解答 解:当a=2,b=0时,满足|a|+|b|>1,但b<-1不成立,即充分性不成立,
若b<-1,则|b|>1,则|a|+|b|>1恒成立,即必要性成立,
则“|a|+|b|>1”是“b<-1”的必要不充分条件,
故选:B

点评 本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设p:0<x<2,q:2x>1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$
(1)求数列{an}的通项公式;
(2)设bn=anan+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公差为1的等差数列,则数列{an}的通项公式an=$\frac{1}{2}$n(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知角α的终边上一点P(m,-$\sqrt{3}$)(m≠0),且cosα=$\frac{{\sqrt{2}m}}{4}$
(1)求m的值;
(2)求出sinα和tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|$\overrightarrow{MP}$-x$\overrightarrow{MN}$|(x∈R),其中MN是半径为4的圆O的一条弦,O为原点,P为单位圆上的点,设函数f(x)的最小值为t,当点P在单位圆上运动时,t的最大值为3,则线段MN的长度为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sin($\frac{π}{4}$-x)•sin($\frac{π}{4}$+x)-2$\sqrt{3}$sinxcos(π-x).
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{12}$个单位长度,再将所得图象上各点的横坐标变为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,$\frac{5π}{6}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}{x-2y+5≤0}\\{x+3≥0}\\{y≤2}\end{array}\right.$则z=x+2y的最大值是(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案