精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=|$\overrightarrow{MP}$-x$\overrightarrow{MN}$|(x∈R),其中MN是半径为4的圆O的一条弦,O为原点,P为单位圆上的点,设函数f(x)的最小值为t,当点P在单位圆上运动时,t的最大值为3,则线段MN的长度为4$\sqrt{3}$.

分析 设x$\overrightarrow{MN}$=$\overrightarrow{MA}$,函数f(x)的最小值化为点P到直线MN的距离,结合图形求出tmax=3时MN的长度.

解答 解:设x$\overrightarrow{MN}$=$\overrightarrow{MA}$,
则函数f(x)=|$\overrightarrow{MP}$-x$\overrightarrow{MN}$|=|$\overrightarrow{MP}$-$\overrightarrow{MA}$|=|$\overrightarrow{AP}$|,其中P为单位圆O上的点,
∵x$\overrightarrow{MN}$=$\overrightarrow{MA}$,
∴点A在直线MN上;
∴函数f(x)的最小值t为点P到直线MN的距离,
当tmax=3时,如图所示;

线段MN的长度为|MN|=2$\sqrt{{4}^{2}-(3-1)^{2}}$=4$\sqrt{3}$.
故答案为:4$\sqrt{3}$.

点评 本题考查了向量知识的运用问题,也考查了转化思想与数形结合的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知m,n,l是三条不同的直线,α,β是两个不同的平面,下列命题正确的是(  )
A.若m∥α,n⊥β,m⊥n,则α⊥βB.若m?α,n?α,n⊥l,则l⊥α
C.若m∥α,n⊥β,α⊥β,则m∥nD.若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x),当0<x<1时,f(x)=4x则f(-$\frac{5}{2}$)+f(2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线l与曲线M(x0,y0)满足下列两个条件:
(1)直线l在点M(x0,y0)处与曲线C相切;
(2)曲线C在点M附近位于直线l的两侧,则称直线l在点M处“内切”曲线C.
下列命题正确的是①②(写出所有正确命题的编号)
①直线l:y=0在点M(0,0)处“内切”曲线C:y=x3
②直线l:y=x在点M(0,0)处“内切”曲线C:y=sinx
③直线l:y=x-1在点M(1,0)处“内切”曲线C:y=lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b∈R,则“|a|+|b|>1”是“b<-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,F,H分别为AB,PC,BC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面PAH⊥平面DEF;
(Ⅲ)若二面角P-CD-B的平面角为45°,求PD与平面PAH所成的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为60°,求PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数exf(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是(  )
A.f(x)=2-xB.f(x)=x2C.f(x)=3-xD.f(x)=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.

查看答案和解析>>

同步练习册答案