精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x),当0<x<1时,f(x)=4x则f(-$\frac{5}{2}$)+f(2)=-2.

分析 根据函数奇偶性和周期性的性质,将函数进行转化进行求解即可.

解答 解:∵f(x+2)=f(x),
∴函数的周期是2,
∵f(x)是定义在R上的奇函数,
∴f(0)=0,
则f(2)=f(0)=0,
f(-$\frac{5}{2}$)=f(-$\frac{5}{2}$+2)=f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=-${4}^{\frac{1}{2}}$=-2,
则f(-$\frac{5}{2}$)+f(2)=-2+0=-2,
故答案为:-2

点评 本题主要考查函数值的计算,根据函数奇偶性和周期性的性质将条件进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如右图所示,则该几何体的体积为(  )
A.$\frac{5}{3}$B.$\frac{{10\sqrt{3}}}{3}$C.$\frac{10}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(n)=$\left\{\begin{array}{l}{{n}^{2},n为正奇数}\\{-{n}^{2},n为正偶数}\end{array}\right.$ 且an=f(n)+f(n+1),则a1+a2+a3+…+a2017的值为(  )
A.0B.2019C.-2019D.2018×2019

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定义在R上的奇函数f(x),当x>0时,f(x)=log2(x+1),则使得f(2x)<f(x-1)成立的x的取值范围为{x|x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$
(1)求数列{an}的通项公式;
(2)设bn=anan+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB=$\sqrt{2}$,AF=1,G为线段AD上的任意一点.
(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;
(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求$\frac{sinα}{sinβ}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公差为1的等差数列,则数列{an}的通项公式an=$\frac{1}{2}$n(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|$\overrightarrow{MP}$-x$\overrightarrow{MN}$|(x∈R),其中MN是半径为4的圆O的一条弦,O为原点,P为单位圆上的点,设函数f(x)的最小值为t,当点P在单位圆上运动时,t的最大值为3,则线段MN的长度为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案