精英家教网 > 高中数学 > 题目详情
7.一个几何体的三视图如右图所示,则该几何体的体积为(  )
A.$\frac{5}{3}$B.$\frac{{10\sqrt{3}}}{3}$C.$\frac{10}{3}$D.$\frac{{5\sqrt{3}}}{3}$

分析 由已知中的三视图,可得该几何体是由一个三棱柱,挖去一个三棱锥,所得的组合体,进而可得答案.

解答 解:由已知中的三视图,可得该几何体是:
一个三棱柱挖掉一个三棱锥,所得的组合体,
其直观图如图所示:
∵三棱柱的体积V=$\frac{\sqrt{3}}{4}$×22×2=2$\sqrt{3}$,
挖去的棱锥体积V=$\frac{1}{3}$($\frac{\sqrt{3}}{4}$×22)×1=$\frac{\sqrt{3}}{3}$,
故该几何体的体积为:2$\sqrt{3}$-$\frac{\sqrt{3}}{3}$=$\frac{5\sqrt{3}}{3}$,
故选:D.

点评 本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及三视图的数据所对应的几何量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=$\frac{4}{3}$x3+bx2+2x-5有3个单调区间,则实数b的取值范围(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞),.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正实数x,y满足xy(x+3y)=x-2y,那么y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为(  )
A.2000元B.3200元C.1800元D.2100元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在一个口袋中装有大小相同的5个白球和3个黑球,从中摸出3个球,至少摸到2个黑球的概率为(  )
A.$\frac{9}{28}$B.$\frac{3}{8}$C.$\frac{3}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,D是BC上的点,AD平分∠BAC,△ABD的面积是△ADC面积的两倍,则$\frac{sin∠B}{sin∠C}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集U=R,非空集合$A=\left\{{x|\frac{x-2}{{x-({3a+1})}}<0}\right\},B=\left\{{x|\frac{{x-{a^2}-2}}{x-a}<0}\right\}$.
(1)当$a=\frac{1}{2}$时,求(∁UB)∩A;
(2)命题p:x∈A,命题q:x∈B,若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n,l是三条不同的直线,α,β是两个不同的平面,下列命题正确的是(  )
A.若m∥α,n⊥β,m⊥n,则α⊥βB.若m?α,n?α,n⊥l,则l⊥α
C.若m∥α,n⊥β,α⊥β,则m∥nD.若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x),当0<x<1时,f(x)=4x则f(-$\frac{5}{2}$)+f(2)=-2.

查看答案和解析>>

同步练习册答案