精英家教网 > 高中数学 > 题目详情
15.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为(  )
A.2000元B.3200元C.1800元D.2100元

分析 本题是一个分步计数问题,首先从01到17中选3个连续号有15种选法;再从19到29中选2个连续号有10种选法;最后从30到36中选1个号有7种选法,根据分步计数原理得到结果,做出需要的钱数.

解答 解:由题意知本题是一个分步计数问题,
第1步从01到17中选3个连续号有15种选法;
第2步从19到29中选2个连续号有10种选法;
第3步从30到36中选1个号有7种选法.
由分步计数原理可知:
满足要求的注数共有15×10×7=1050注,
故至少要花1050×2=2100,
故选:D

点评 本题考查分步计数原理,是一个同学们感兴趣的问题,问题的情景和我们比较接近,解题时注意实际问题向数学问题的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,a,b,c分别为内角A,B,C的对边,且2absinC=$\sqrt{3}$(b2+c2-a2),若a=$\sqrt{13}$,c=3,则△ABC的面积为(  )
A.3B.3$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知α∈($\frac{3}{2}$π,2π),且满足cos(α+$\frac{2017}{2}$π)=$\frac{3}{5}$,则sinα+cosα=(  )
A.-$\frac{7}{5}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.写出下列命题的否定:
(1)?x0∈R,2${\;}^{{x}_{0}}$≤0;    
(2)?x∈R,sinx≤1;    
(3)?x∈R,f(x)≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知p:${log_2}({{x^2}-3x})>2$,q:$\frac{x-4}{x+1}>0$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.实数x、y满足3x2+4y2=12,则z=2x+$\sqrt{3}y$的最小值是(  )
A.-5B.-6C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如右图所示,则该几何体的体积为(  )
A.$\frac{5}{3}$B.$\frac{{10\sqrt{3}}}{3}$C.$\frac{10}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)的定义域为R,f(-1)=2,对?x∈R,f'(x)>2,则f(log2x)<2log2x+4的解集为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定义在R上的奇函数f(x),当x>0时,f(x)=log2(x+1),则使得f(2x)<f(x-1)成立的x的取值范围为{x|x<-1}.

查看答案和解析>>

同步练习册答案