精英家教网 > 高中数学 > 题目详情
2.如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB=$\sqrt{2}$,AF=1,G为线段AD上的任意一点.
(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;
(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求$\frac{sinα}{sinβ}$的取值范围.

分析 (1)设AC∩BD=O,连结OF,OM,推导出AM⊥OF,DB⊥CA,从而DB⊥平面ACEF,进而DB⊥AM,AM⊥平面BDF,由此能证明平面AMG⊥平面BDF.
(2)分别以CD、CB、CE为x,y,z轴建立坐标系,利用向量法能求出$\frac{sinα}{sinβ}$的取值范围.

解答 证明:(1)设AC∩BD=O,连结OF,OM,
由已知得AO=1,AF=1,
∴四边形AFMO是正方形,∴AM⊥OF,
又∵正方形ABCD和矩形ACEF所在平面互相垂直,交线是CA,DB⊥CA,
∴DB⊥平面ACEF,又AM?平面ACEF,∴DB⊥AM,
∵BD∩OF=O,∴AM⊥平面BDF,
∵AM?平面AMG,∴平面AMG⊥平面BDF.
解:(2)∵正方形ABCD和矩形ACEF所在平面互相垂直,交线是CA,EC⊥CA,
∴EC⊥平面ABCD,∴CD、CB、CE两两垂直,
分别以CD、CB、CE为x,y,z轴建立坐标系,
则平面ABF的法向量$\overrightarrow{n}$=(0,1,0),
由(1)得平面BDF的法向量$\overrightarrow{m}$=$\overrightarrow{AM}$=(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,1),
由N为线段EF上任意一点,
设$\overrightarrow{EN}$=$λ\overrightarrow{EF}$=$λ\overrightarrow{CA}$=λ($\sqrt{2},\sqrt{2},0$),(λ∈[0,1]),
∴$\overrightarrow{AN}$=((λ-1)$\sqrt{2}$,(λ-1)$\sqrt{2}$,1),
∴sinα=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{|(λ-1)•\sqrt{2}|}{\sqrt{4(λ-1)^{2}+1}}$=$\frac{(1-λ)\sqrt{2}}{\sqrt{4(λ-1)^{2}+1}}$,
∵λ∈[0,1],∴$\frac{sinα}{sinβ}$=$\frac{2(1-λ)}{3-2λ}$=1-$\frac{1}{3-2λ}$∈[0,$\frac{2}{3}$].

点评 本题考查面面垂直的证明,考查两角的正弦值的取值范围的求法,涉及到空间中线线、线面、面面间的位置关系等知识点,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,D是BC上的点,AD平分∠BAC,△ABD的面积是△ADC面积的两倍,则$\frac{sin∠B}{sin∠C}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的各项均为正数,设其前n项和为Sn,且${a_n}=2\sqrt{S_n}-1$.
(1)求数列{an}的通项公式.
(2)若数列${b_n}=\frac{{{a_n}+3}}{2}$,设Tn为数列$\{\frac{1}{{{b_n}{b_{n+1}}}}\}$的前n项的和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.(1-x)(2x+1)5中,x3项的系数为40.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x),当0<x<1时,f(x)=4x则f(-$\frac{5}{2}$)+f(2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,AP=AB=AC=a,$AD=\sqrt{2}a$,PA⊥底面ABCD.
(1)求证:平面PCD⊥平面PAC;
(2)在棱PC上是否存在一点E,使得二面角B-AE-D的平面角的余弦值为$-\frac{{\sqrt{6}}}{3}$?若存在,求出$λ=\frac{CE}{CP}$的值?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线l与曲线M(x0,y0)满足下列两个条件:
(1)直线l在点M(x0,y0)处与曲线C相切;
(2)曲线C在点M附近位于直线l的两侧,则称直线l在点M处“内切”曲线C.
下列命题正确的是①②(写出所有正确命题的编号)
①直线l:y=0在点M(0,0)处“内切”曲线C:y=x3
②直线l:y=x在点M(0,0)处“内切”曲线C:y=sinx
③直线l:y=x-1在点M(1,0)处“内切”曲线C:y=lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,F,H分别为AB,PC,BC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面PAH⊥平面DEF;
(Ⅲ)若二面角P-CD-B的平面角为45°,求PD与平面PAH所成的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin2x-cos2x-2$\sqrt{3}$sinx cosx(x∈R).
(Ⅰ)求f($\frac{2π}{3}$)的值.
(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

同步练习册答案