精英家教网 > 高中数学 > 题目详情
9.已知数列a1,a2-a1,a3-a2,…,an-an-1,…是首项为1,公差为1的等差数列,则数列{an}的通项公式an=$\frac{1}{2}$n(n+1).

分析 利用累加法可知当n≥2时an=n+$\frac{n(n-1)}{2}$,进而验证当n=1是否成立即可.

解答 解:因为a1,a2-a1,a3-a2,…,an-an-1,…是首项为1、公差为1的等差数列,
所以当n≥2时an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=n+$\frac{n(n-1)}{2}$,
又因为a1=1满足上式,
所以${a_n}=\frac{1}{2}n(n+1)$,
故答案为:$\frac{1}{2}$n(n+1).

点评 本题考查数列的通项及前n项和,考查累加法,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知全集U=R,非空集合$A=\left\{{x|\frac{x-2}{{x-({3a+1})}}<0}\right\},B=\left\{{x|\frac{{x-{a^2}-2}}{x-a}<0}\right\}$.
(1)当$a=\frac{1}{2}$时,求(∁UB)∩A;
(2)命题p:x∈A,命题q:x∈B,若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体ABCDE中,ABDE是平行四边形,AB、AC、AD两两垂直.
(Ⅰ)求证:平面ACD⊥平面ECD;
(Ⅱ)若BC=CD=DB=$\sqrt{2}$,求点B到平面ECD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x),当0<x<1时,f(x)=4x则f(-$\frac{5}{2}$)+f(2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,$AB=\sqrt{2},AF=1$,M在线段EF上.
(1)若M是线段EF的中点,证明:平面AMD⊥平面BDF;
(2)命题“若M为线段EF的中点,则平面ADM⊥平面BDF”的逆命题是否成立?若成立,给出证明,否则请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线l与曲线M(x0,y0)满足下列两个条件:
(1)直线l在点M(x0,y0)处与曲线C相切;
(2)曲线C在点M附近位于直线l的两侧,则称直线l在点M处“内切”曲线C.
下列命题正确的是①②(写出所有正确命题的编号)
①直线l:y=0在点M(0,0)处“内切”曲线C:y=x3
②直线l:y=x在点M(0,0)处“内切”曲线C:y=sinx
③直线l:y=x-1在点M(1,0)处“内切”曲线C:y=lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b∈R,则“|a|+|b|>1”是“b<-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为60°,求PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(m,1),若向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$垂直,则m=7.

查看答案和解析>>

同步练习册答案