精英家教网 > 高中数学 > 题目详情
16.已知角α的终边上一点P(m,-$\sqrt{3}$)(m≠0),且cosα=$\frac{{\sqrt{2}m}}{4}$
(1)求m的值;
(2)求出sinα和tanα.

分析 (1)根据三角函数的定义求解即可.
(2)根据同角三角函数关系式求解.

解答 解:(1)角α的终边上一点P(m,-$\sqrt{3}$)(m≠0),且cosα=$\frac{{\sqrt{2}m}}{4}$
设知$x=m,y=-\sqrt{3}$,
∴${r^2}=|OP{|^2}={(-\sqrt{3})^2}+{m^2}$(O为原点),
则$r=\sqrt{3+{m^2}}$.
∴$cosα=\frac{m}{r}=\frac{{\sqrt{2}m}}{4}=\frac{m}{{2\sqrt{2}}}$,
∴$r=\sqrt{3+{m^2}}=2\sqrt{2}$,
即3+m2=8,
解得$m=±\sqrt{5}$.
(2)由(1)可知:当$m=\sqrt{5}$时,$cosα=\frac{{\sqrt{10}}}{4}$,$sinα=\frac{{-\sqrt{6}}}{4}$,$tanα=\frac{sinα}{cosα}=-\frac{{\sqrt{15}}}{5}$;
当$m=-\sqrt{5}$时,$cosα=-\frac{{\sqrt{10}}}{4}$,$sinα=\frac{{-\sqrt{6}}}{4}$,$tanα=\frac{sinα}{cosα}=\frac{{\sqrt{15}}}{5}$.

点评 本题考查任意角的三角函数的定义和同角三角函数的运用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)
(Ⅰ)3个女生必须排在一起,有多少种不同的排法?
(Ⅱ)任何两个女生彼此不相邻,有多少种不同的排法?
(Ⅲ)甲乙二人之间恰好有三个人,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥A-EFCB中,四边形EFCB是梯形,EF∥BC且EF=$\frac{3}{4}$BC,△ABC是边长为2的正三角形,顶点F在AC上射影为点G,且FG=$\sqrt{3}$,CF=$\frac{{\sqrt{21}}}{2}$,BF=$\frac{5}{2}$.
(1)证明:平面FGB⊥平面ABC;
(2)求三棱锥E-GBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,$AB=\sqrt{2},AF=1$,M在线段EF上.
(1)若M是线段EF的中点,证明:平面AMD⊥平面BDF;
(2)命题“若M为线段EF的中点,则平面ADM⊥平面BDF”的逆命题是否成立?若成立,给出证明,否则请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的通项为an=$\left\{{\begin{array}{l}{n+\frac{15}{n},n≤5}\\{alnn-\frac{1}{4},n>5}\end{array}}$,若{an}的最小值为$\frac{31}{4}$,则实数a的取值范围是[$\frac{8}{ln6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b∈R,则“|a|+|b|>1”是“b<-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,平行四边形PABC中,∠PAC=∠ABC=90°,PA=AB=2$\sqrt{3}$,AC=4,现把△PAC沿AC折起,使PA与平面ABC成60°角,设此时P在平面ABC上的投影为O点(O与B在AC的同侧).

(Ⅰ)求证:OB∥平面PAC;
(Ⅱ)试问:线段PA上是否在存在一点M,使得二面角M-BC-A的余弦值为$\frac{5\sqrt{37}}{37}$?若存在,指出M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a>1,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的离心率的取值范围是(  )
A.($\sqrt{2}$,+∞)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.(1,2)

查看答案和解析>>

同步练习册答案